-
2
-
-
41549168778
-
Convergence rates of general regularization methods for statistical inverse problems and applications
-
N. Bissantz, T. Hohage, A. Munk, and F. Ruymgaart. Convergence Rates of General Regularization Methods for Statistical Inverse Problems and Applications. SIAM Journal on Numerical Analysis, 45(6):2610-2636, 2007.
-
(2007)
SIAM Journal on Numerical Analysis
, vol.45
, Issue.6
, pp. 2610-2636
-
-
Bissantz, N.1
Hohage, T.2
Munk, A.3
Ruymgaart, F.4
-
4
-
-
33746194045
-
Local Rademacher complexities and oracle inequalities in risk minimization
-
Discussion of V. Koltchinskii's
-
G. Blanchard and P. Massart. Discussion of V. Koltchinskii's "Local Rademacher complexities and oracle inequalities in risk minimization". Annals of Statistics, 34(6):2664-2671, 2006.
-
(2006)
Annals of Statistics
, vol.34
, Issue.6
, pp. 2664-2671
-
-
Blanchard, G.1
Massart, P.2
-
7
-
-
77951538361
-
Cross-validation based adaptation for regularization operators in learning theory
-
A. Caponnetto and Y. Yao. Cross-validation based Adaptation for Regularization Operators in Learning Theory. Analysis and Applications, 8(2):161-183, 2010.
-
(2010)
Analysis and Applications
, vol.8
, Issue.2
, pp. 161-183
-
-
Caponnetto, A.1
Yao, Y.2
-
8
-
-
74049093630
-
Sparse partial least squares for simultaneous dimension reduction and variable selection
-
H. Chun and S. Keles. Sparse Partial Least Squares for Simultaneous Dimension Reduction and Variable Selection. Journal of the Royal Statistical Society B, 72(1):3-25, 2010.
-
(2010)
Journal of the Royal Statistical Society B
, vol.72
, Issue.1
, pp. 3-25
-
-
Chun, H.1
Keles, S.2
-
9
-
-
21844447610
-
Learning from Examples as an Inverse Problem
-
E. De Vito, L. Rosasco, A. Caponnetto, U. De Giovannini, and F. Odone. Learning from Examples as an Inverse Problem. Journal of Machine Learning Research, 6(1):883, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.6
, Issue.1
, pp. 883
-
-
De Vito, E.1
Rosasco, L.2
Caponnetto, A.3
De Giovannini, U.4
Odone, F.5
-
11
-
-
0003791218
-
Conjugate gradient type methods for linear Ill-posed problems
-
M. Hanke. Conjugate Gradient Type Methods for Linear Ill-posed Problems. Pitman Research Notes in Mathematics Series, 327, 1995.
-
(1995)
Pitman Research Notes in Mathematics Series
, vol.327
-
-
Hanke, M.1
-
12
-
-
47049125350
-
Spectral algorithms for supervised learning
-
L. Lo Gerfo, L. Rosasco, E. Odone, F.and De Vito, and A. Verri. Spectral Algorithms for Supervised Learning. Neural Computation, 20:1873-1897, 2008.
-
(2008)
Neural Computation
, vol.20
, pp. 1873-1897
-
-
Lo Gerfo, L.1
Rosasco, L.2
Odone, E.3
De Vito, F.4
Verri, A.5
-
13
-
-
73949116964
-
Regularization in Kernel learning
-
S. Mendelson and J. Neeman. Regularization in Kernel Learning. The Annals of Statistics, 38(1):526-565, 2010.
-
(2010)
The Annals of Statistics
, vol.38
, Issue.1
, pp. 526-565
-
-
Mendelson, S.1
Neeman, J.2
-
14
-
-
0034354146
-
Partial least squares estimator for single-index models
-
P. Naik and C.L. Tsai. Partial Least Squares Estimator for Single-index Models. Journal of the Royal Statistical Society B, 62(4):763-771, 2000.
-
(2000)
Journal of the Royal Statistical Society B
, vol.62
, Issue.4
, pp. 763-771
-
-
Naik, P.1
Tsai, C.L.2
-
15
-
-
38249043048
-
The regularizing properties of the adjoint gradient method in Ill-posed problems
-
A. S. Nemirovskii. The Regularizing Properties of the Adjoint Gradient Method in Ill-posed Problems. USSR Computational Mathematics and Mathematical Physics, 26(2):7-16, 1986.
-
(1986)
USSR Computational Mathematics and Mathematical Physics
, vol.26
, Issue.2
, pp. 7-16
-
-
Nemirovskii, A.S.1
-
17
-
-
14344254996
-
Learning with non-positive kernels
-
C. S. Ong, X. Mary, S. Canu, and A. J. Smola. Learning with Non-positive Kernels. In Proceedings of the 21st International Conference on Machine Learning, pages 639 - 646, 2004.
-
(2004)
Proceedings of the 21st International Conference on Machine Learning
, pp. 639-646
-
-
Ong, C.S.1
Mary, X.2
Canu, S.3
Smola, A.J.4
-
18
-
-
0038259120
-
Kernel partial least squares regression in reproducing Kernel Hilbert spaces
-
R. Rosipal and L.J. Trejo. Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Spaces. Journal of Machine Learning Research, 2:97-123, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.2
, pp. 97-123
-
-
Rosipal, R.1
Trejo, L.J.2
-
19
-
-
1942516826
-
Kernel PLS-SVC for linear and nonlinear classification
-
Washington, DC
-
R. Rosipal, L.J. Trejo, and B. Matthews. Kernel PLS-SVC for Linear and Nonlinear Classification. In Proceedings of the Twentieth International Conference on Machine Learning, pages 640-647, Washington, DC, 2003.
-
(2003)
Proceedings of the Twentieth International Conference on Machine Learning
, pp. 640-647
-
-
Rosipal, R.1
Trejo, L.J.2
Matthews, B.3
-
21
-
-
0001681052
-
The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses
-
S.Wold, H. Ruhe, H.Wold, andW.J. Dunn III. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM Journal of Scientific and Statistical Computations, 5:735-743, 1984.
-
(1984)
SIAM Journal of Scientific and Statistical Computations
, vol.5
, pp. 735-743
-
-
Wold, S.1
Ruhe, H.2
Wold, H.3
Dunn III, W.J.4
-
22
-
-
22944490838
-
Learning bounds for kernel regression using effective data dimensionality
-
T. Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural Computation, 17(9):2077-2098, 2005.
-
(2005)
Neural Computation
, vol.17
, Issue.9
, pp. 2077-2098
-
-
Zhang, T.1
|