메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1-329

Basic Equations of the Mass Transport through a Membrane Layer

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85144350364     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/C2011-0-04271-0     Document Type: Book
Times cited : (6)

References (375)
  • 1
    • 0016437957 scopus 로고
    • Statistical thermodynamics of liquid mixtures: a new conception for the excess gibbs energy of partly or completely miscible mixtures
    • D.S. Abrams and J.M. Prausnitz (1975) Statistical thermodynamics of liquid mixtures: a new conception for the excess gibbs energy of partly or completely miscible mixtures. Am. Inst. Chem. 21 116-128.
    • (1975) Am. Inst. Chem. , vol.21 , pp. 116-128
    • Abrams, D.S.1    Prausnitz, J.M.2
  • 2
  • 7
    • 0037056847 scopus 로고    scopus 로고
    • Adsorption and diffusion properties of zeolite membranes by transient permeation
    • T.Q. Gardner, J.L. Falconer and R.D. Noble (2002) Adsorption and diffusion properties of zeolite membranes by transient permeation. Desalination 149 435-440.
    • (2002) Desalination , vol.149 , pp. 435-440
    • Gardner, T.Q.1    Falconer, J.L.2    Noble, R.D.3
  • 9
    • 46149096186 scopus 로고    scopus 로고
    • Computer program for simulation of mass transport in nanofiltration membranes
    • V. Geraldes and A.M. Brites (2008) Computer program for simulation of mass transport in nanofiltration membranes. J. Membr. Sci. 321 172-182.
    • (2008) J. Membr. Sci. , vol.321 , pp. 172-182
    • Geraldes, V.1    Brites, A.M.2
  • 10
    • 0028389060 scopus 로고
    • A generalized solution-diffusion model of the pervaporation process through composite membrane, Part I. Prediction of mixture solubilities in the dense active layer using the UNIQUAC model
    • A. Heintz and W. Stephan (1994) A generalized solution-diffusion model of the pervaporation process through composite membrane, Part I. Prediction of mixture solubilities in the dense active layer using the UNIQUAC model. J. Membr. Sci. 89 143-151.
    • (1994) J. Membr. Sci. , vol.89 , pp. 143-151
    • Heintz, A.1    Stephan, W.2
  • 11
    • 0028389062 scopus 로고
    • A generalized solution-diffusion model of the pervaporation process through composite membrane, Part II. Concentration polarization, coupled diffusion and the influence of the porous layer
    • A. Heintz and W. Stephan (1994) A generalized solution-diffusion model of the pervaporation process through composite membrane, Part II. Concentration polarization, coupled diffusion and the influence of the porous layer. J. Membr. Sci. 89 153-169.
    • (1994) J. Membr. Sci. , vol.89 , pp. 153-169
    • Heintz, A.1    Stephan, W.2
  • 12
    • 15444374981 scopus 로고    scopus 로고
    • Kinetic modeling of partial oxidation of methane in an oxygen permeable membrane reactor
    • D.L. Hoang, S.H. Chan and O.L. Ding (2005) Kinetic modeling of partial oxidation of methane in an oxygen permeable membrane reactor. Chem. Eng. Res. Design 82 177-186.
    • (2005) Chem. Eng. Res. Design , vol.82 , pp. 177-186
    • Hoang, D.L.1    Chan, S.H.2    Ding, O.L.3
  • 13
    • 0242548491 scopus 로고    scopus 로고
    • Description of binary liquid mixtures transport through non-porous membrane by modified Maxwell–Stefan equations
    • P. Izák, L. Bartovská, K. Friess, M. Sipek and P. Uchytil (2003) Description of binary liquid mixtures transport through non-porous membrane by modified Maxwell–Stefan equations. J. Membr. Sci. 214 293-309.
    • (2003) J. Membr. Sci. , vol.214 , pp. 293-309
    • Izák, P.1    Bartovská, L.2    Friess, K.3    Sipek, M.4    Uchytil, P.5
  • 14
    • 0342699653 scopus 로고    scopus 로고
    • From binary to ternary systems: general behavior and modeling of membrane sorption in purely organic systems strongly deviating from ideality by UNIQUAC and related models
    • A. Janquiéres, L. Perrin, S. Arnold, R. Clément and P. Lochon (2000) From binary to ternary systems: general behavior and modeling of membrane sorption in purely organic systems strongly deviating from ideality by UNIQUAC and related models. J. Membr. Sci. 174 255-275.
    • (2000) J. Membr. Sci. , vol.174 , pp. 255-275
    • Janquiéres, A.1    Perrin, L.2    Arnold, S.3    Clément, R.4    Lochon, P.5
  • 15
    • 0342683825 scopus 로고    scopus 로고
    • Some observation about the application of Fick’s first law for membrane separation of multicomponent mixtures
    • H.D. Kamaruddin and W.J. Koros (1997) Some observation about the application of Fick’s first law for membrane separation of multicomponent mixtures. J. Membr. Sci. 135 147-159.
    • (1997) J. Membr. Sci. , vol.135 , pp. 147-159
    • Kamaruddin, H.D.1    Koros, W.J.2
  • 16
    • 0029105661 scopus 로고
    • Permeation and separation of light hydrocarbons through a silicalite-1 membrane. Application of the generalized Maxwell–Stefan equations
    • F. Kapteijn, W.J.W. Bakker, G. Zheng and J. Poppe (1995) Permeation and separation of light hydrocarbons through a silicalite-1 membrane. Application of the generalized Maxwell–Stefan equations. Chem. Eng. J. 57 145-153.
    • (1995) Chem. Eng. J. , vol.57 , pp. 145-153
    • Kapteijn, F.1    Bakker, W.J.W.2    Zheng, G.3    Poppe, J.4
  • 17
    • 0033626724 scopus 로고    scopus 로고
    • The generalized Maxwell–Stefan model for diffusion in zeolites: sorbate molecules with different saturation loadings
    • F. Kapteijn, J.A. Moulijn and R. Krishna (2000) The generalized Maxwell–Stefan model for diffusion in zeolites: sorbate molecules with different saturation loadings. Chem. Eng. Sci. 55 2923-2930.
    • (2000) Chem. Eng. Sci. , vol.55 , pp. 2923-2930
    • Kapteijn, F.1    Moulijn, J.A.2    Krishna, R.3
  • 18
    • 0025639498 scopus 로고
    • Multicomponent surface diffusion of adsorbed species: a description based on the generalized Maxwell–Stefan equations
    • R. Krishna (1990) Multicomponent surface diffusion of adsorbed species: a description based on the generalized Maxwell–Stefan equations. Chem. Eng. Sci. 45 1779-1791.
    • (1990) Chem. Eng. Sci. , vol.45 , pp. 1779-1791
    • Krishna, R.1
  • 19
    • 43949172215 scopus 로고
    • A unified approach to the modeling of intraparticle diffusion in adsorption processes
    • R. Krishna (1993) A unified approach to the modeling of intraparticle diffusion in adsorption processes. Gas. Sep. Purif. 7 91.
    • (1993) Gas. Sep. Purif. , vol.7 , pp. 91
    • Krishna, R.1
  • 20
    • 0142244739 scopus 로고    scopus 로고
    • Modeling issues in zeolite based separation processes
    • R. Krishna and R. Baur (2003) Modeling issues in zeolite based separation processes. Sep. Purif. Technol. 33 213-254.
    • (2003) Sep. Purif. Technol. , vol.33 , pp. 213-254
    • Krishna, R.1    Baur, R.2
  • 21
    • 0031094961 scopus 로고    scopus 로고
    • The Maxwell-Stefan approach to mass transfer
    • R. Krishna and J.A. Wesselingh (1997) The Maxwell-Stefan approach to mass transfer. Chem. Eng. Sci. 52 861-911.
    • (1997) Chem. Eng. Sci. , vol.52 , pp. 861-911
    • Krishna, R.1    Wesselingh, J.A.2
  • 22
    • 0033150467 scopus 로고    scopus 로고
    • Influence of isotherm inflection on diffusion in silicalite
    • R. Krishna, T.J. Vlugt and B. Smit (1999) Influence of isotherm inflection on diffusion in silicalite. Chem. Eng. Sci. 54 1751-1757.
    • (1999) Chem. Eng. Sci. , vol.54 , pp. 1751-1757
    • Krishna, R.1    Vlugt, T.J.2    Smit, B.3
  • 23
    • 34249073683 scopus 로고    scopus 로고
    • 2 permeation across zeolite membranes
    • R. Krishna, J.M. van Baten, E. Garcia-Perez and S. Calero (2007) Incorporating the loading dependence of the Maxwell–Stefan diffusivity in the modeling of CH 4 and CO 2 permeation across zeolite membranes. Ind. Eng. Chem. Res. 46 2974-2986.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2974-2986
    • Krishna, R.1    van Baten, J.M.2    Garcia-Perez, E.3    Calero, S.4
  • 24
    • 0031553530 scopus 로고    scopus 로고
    • Membrane distillation: review
    • K.W. Lawson and D.R. Lloyd (1997) Membrane distillation: review. J. Membr. Sci. 124 1-25.
    • (1997) J. Membr. Sci. , vol.124 , pp. 1-25
    • Lawson, K.W.1    Lloyd, D.R.2
  • 25
    • 0020115964 scopus 로고
    • The growth of membrane and technology
    • H.K. Lonsdale (1982) The growth of membrane and technology. J. Membr. Sci. 10 81-181.
    • (1982) J. Membr. Sci. , vol.10 , pp. 81-181
    • Lonsdale, H.K.1
  • 26
    • 34250671398 scopus 로고    scopus 로고
    • 4 mixtures across SAPO-34 membrane with the Maxwell–Stefan equations
    • S. Li, J.I. Falconer, R.D. Noble and R. Krishna (2007) Modeling permeation of CO 2/CH 4, CO 2/N 2 and N 2/CH 4 mixtures across SAPO-34 membrane with the Maxwell–Stefan equations. Ind. Eng. Chem. Res. 46 3904-3911.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 3904-3911
    • Li, S.1    Falconer, J.I.2    Noble, R.D.3    Krishna, R.4
  • 27
    • 34247341012 scopus 로고    scopus 로고
    • Interpreting unary, binary and ternary mixture permeation cross a SAPO-34 membrane with loading-dependent Maxwell–Stefan diffusivities
    • S. Li, J.I. Falconer, R.D. Noble and R. Krishna (2007) Interpreting unary, binary and ternary mixture permeation cross a SAPO-34 membrane with loading-dependent Maxwell–Stefan diffusivities. J. Phys. Chem. C 111 5075-5082.
    • (2007) J. Phys. Chem. C , vol.111 , pp. 5075-5082
    • Li, S.1    Falconer, J.I.2    Noble, R.D.3    Krishna, R.4
  • 28
    • 3142602754 scopus 로고    scopus 로고
    • Pervaporation of benzene/cyclohexane mixtures using ion-exchange membrane containing copper ions
    • S.J. Lue, F.J. Wang and S.-Y. Hsiaw (2004) Pervaporation of benzene/cyclohexane mixtures using ion-exchange membrane containing copper ions. J. Membr. Sci. 240 149-158.
    • (2004) J. Membr. Sci. , vol.240 , pp. 149-158
    • Lue, S.J.1    Wang, F.J.2    Hsiaw, S.-Y.3
  • 29
    • 33748418940 scopus 로고    scopus 로고
    • Modelling transient permeation of binary mixtures through zeolite membrane
    • J.G. Martinek, T.Q. Gardener, R.D. Noble and J.L. Falconer (2006) Modelling transient permeation of binary mixtures through zeolite membrane. Ind. Eng. Chem. Res. 45 6032-6043.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 6032-6043
    • Martinek, J.G.1    Gardener, T.Q.2    Noble, R.D.3    Falconer, J.L.4
  • 31
    • 0033213547 scopus 로고    scopus 로고
    • Modeling of liquid/liquid separation by pervaporation: toluene from water
    • E.E.B. Meuleman, B. Bosch, M.H.V. Mulder and H. Stratman (1999) Modeling of liquid/liquid separation by pervaporation: toluene from water. AIChE J. 45 2153-2160.
    • (1999) AIChE J. , vol.45 , pp. 2153-2160
    • Meuleman, E.E.B.1    Bosch, B.2    Mulder, M.H.V.3    Stratman, H.4
  • 32
    • 0005664809 scopus 로고
    • Pervaporation Separation of Ethanol–Water and Isomeric Xylenes.
    • University of Twente, The Netherlands.
    • Mulder M. (1981) Pervaporation Separation of Ethanol–Water and Isomeric Xylenes. PhD Thesis, University of Twente, The Netherlands.
    • (1981) PhD Thesis,
    • Mulder, M.1
  • 33
    • 0021371951 scopus 로고
    • On the mechanism of separation of ethanol/water mixtures by pervaporation I. Calculations of concentration profiles
    • M.H.V. Mulder and C.A. Smolders (1984) On the mechanism of separation of ethanol/water mixtures by pervaporation I. Calculations of concentration profiles. J. Membr. Sci. 17 289-307.
    • (1984) J. Membr. Sci. , vol.17 , pp. 289-307
    • Mulder, M.H.V.1    Smolders, C.A.2
  • 34
    • 1842710223 scopus 로고    scopus 로고
    • Nonlinear, coupled mass transfer through a dense membrane
    • E. Nagy (2004) Nonlinear, coupled mass transfer through a dense membrane. Desalination 163 345-354.
    • (2004) Desalination , vol.163 , pp. 345-354
    • Nagy, E.1
  • 35
    • 32644467056 scopus 로고    scopus 로고
    • Binary, coupled mass transfer with variable diffusivity through cylindrical dense membrane
    • E. Nagy (2006) Binary, coupled mass transfer with variable diffusivity through cylindrical dense membrane. J. Membr. Sci. 274 159-168.
    • (2006) J. Membr. Sci. , vol.274 , pp. 159-168
    • Nagy, E.1
  • 36
    • 0016893601 scopus 로고
    • The solution-diffusion model for swollen membranes
    • D.R. Paul (1976) The solution-diffusion model for swollen membranes. Sep. Purif. Methods 5 35.
    • (1976) Sep. Purif. Methods , vol.5 , pp. 35
    • Paul, D.R.1
  • 37
    • 0036639729 scopus 로고    scopus 로고
    • Simulation of a catalytic membrane reactor for the oxidative dehydrogenation of butane
    • M. Pedernera, M.J. Alfonso, M. Menéndez and J. Santamaria (2002) Simulation of a catalytic membrane reactor for the oxidative dehydrogenation of butane. Chem. Eng. Sci. 57 2531-2544.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 2531-2544
    • Pedernera, M.1    Alfonso, M.J.2    Menéndez, M.3    Santamaria, J.4
  • 38
    • 0001246105 scopus 로고
    • Surface diffusion, atomic jump rates and thermodynamics
    • D. Reed and G. Ehrlich (1981) Surface diffusion, atomic jump rates and thermodynamics. Surf. Sci. 102 588-609.
    • (1981) Surf. Sci. , vol.102 , pp. 588-609
    • Reed, D.1    Ehrlich, G.2
  • 39
    • 0035975735 scopus 로고    scopus 로고
    • Ideal and non-ideal diffusion through polymers: application to pervaporation
    • P. Schaetzel, Z. Bendjama, C. Vauclair and Q.T. Nguyen (2001) Ideal and non-ideal diffusion through polymers: application to pervaporation. J. Membr. Sci. 191 95-102.
    • (2001) J. Membr. Sci. , vol.191 , pp. 95-102
    • Schaetzel, P.1    Bendjama, Z.2    Vauclair, C.3    Nguyen, Q.T.4
  • 41
    • 84889817529 scopus 로고    scopus 로고
    • Nanofiltration in organic solvents
    • N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura (Eds), New Jersey: John Wiley and Sons
    • P. Silva, L.G. Peeva and A.G. Livingston (2008) Nanofiltration in organic solvents. N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura (Eds) Advanced Membrane Technology and Applications New Jersey: John Wiley and Sons 451-468.
    • (2008) Advanced Membrane Technology and Applications , pp. 451-468
    • Silva, P.1    Peeva, L.G.2    Livingston, A.G.3
  • 42
    • 0141508849 scopus 로고    scopus 로고
    • 4 mixtures in MFI zeolite. A study linking MD simulation with the Maxwell–Stefan formulation
    • A.I. Skoulidas, D.S. Sholl and R. Krishna (2003) Correlation effects in diffusion of CH 4/CF 4 mixtures in MFI zeolite. A study linking MD simulation with the Maxwell–Stefan formulation. Langmuir 19 7977-7988.
    • (2003) Langmuir , vol.19 , pp. 7977-7988
    • Skoulidas, A.I.1    Sholl, D.S.2    Krishna, R.3
  • 43
    • 0035872630 scopus 로고    scopus 로고
    • Investigation of mass transfer through inorganic membrane with several layers
    • S. Thomas, R. Schafer, J. Caro and A. Seidel-Morgenstern (2001) Investigation of mass transfer through inorganic membrane with several layers. Catalysis Today 67 205-216.
    • (2001) Catalysis Today , vol.67 , pp. 205-216
    • Thomas, S.1    Schafer, R.2    Caro, J.3    Seidel-Morgenstern, A.4
  • 44
    • 0032542714 scopus 로고    scopus 로고
    • An experimental study of combined gas phase and surface diffusion in porous glass
    • A. Tuchlenski, P. Uchytil and A. Seidel-Morgenstern (2001) An experimental study of combined gas phase and surface diffusion in porous glass. J. Membr. Sci. 140 165-184.
    • (2001) J. Membr. Sci. , vol.140 , pp. 165-184
    • Tuchlenski, A.1    Uchytil, P.2    Seidel-Morgenstern, A.3
  • 45
    • 0033103638 scopus 로고    scopus 로고
    • Modeling permeation of binary mixtures through zeolite membranes
    • J.M. Van de Graaf, F. Kapteijn and J.A. Moulijn (1999) Modeling permeation of binary mixtures through zeolite membranes. AIChE J. 45 497-511.
    • (1999) AIChE J. , vol.45 , pp. 497-511
    • Van de Graaf, J.M.1    Kapteijn, F.2    Moulijn, J.A.3
  • 46
    • 33947338666 scopus 로고
    • Diffusion in binary solutions
    • A. Vignes (1966) Diffusion in binary solutions. Ind. Eng. Chem. Fund. 5 189-199.
    • (1966) Ind. Eng. Chem. Fund. , vol.5 , pp. 189-199
    • Vignes, A.1
  • 49
    • 2442697876 scopus 로고    scopus 로고
    • The role of permeant molar volume in the solution-diffusion model transport equations
    • J.G. Wijmans (2004) The role of permeant molar volume in the solution-diffusion model transport equations. J. Membr. Sci. 237 39-50.
    • (2004) J. Membr. Sci. , vol.237 , pp. 39-50
    • Wijmans, J.G.1
  • 50
    • 0028972331 scopus 로고
    • The solution-diffusion model: a review
    • J.G. Wijmans and R.W. Baker (1995) The solution-diffusion model: a review. J. Membr. Sci. 107 1-21.
    • (1995) J. Membr. Sci. , vol.107 , pp. 1-21
    • Wijmans, J.G.1    Baker, R.W.2
  • 51
    • 0032071283 scopus 로고    scopus 로고
    • TEOM: a unique technique for measuring adsorption properties. Light alkanes in silicalite-1
    • W. Zhu, J.M. Graaf, L.J.P. Broeke, F. Kapteijn and J.A. Moulijn (1998) TEOM: a unique technique for measuring adsorption properties. Light alkanes in silicalite-1. Ind. Eng. Chem. Res. 37 1934-1942.
    • (1998) Ind. Eng. Chem. Res. , vol.37 , pp. 1934-1942
    • Zhu, W.1    Graaf, J.M.2    Broeke, L.J.P.3    Kapteijn, F.4    Moulijn, J.A.5
  • 55
    • 37049166629 scopus 로고
    • Permeation, diffusion and solution of gases in organic polymer
    • R.M. Barrer (1939) Permeation, diffusion and solution of gases in organic polymer. Trans. Faraday Soc. 35 629-643.
    • (1939) Trans. Faraday Soc. , vol.35 , pp. 629-643
    • Barrer, R.M.1
  • 57
    • 33750308609 scopus 로고    scopus 로고
    • Hindrance factors for diffusion and convection in pores
    • P. Dechadilok and W. Deen (2006) Hindrance factors for diffusion and convection in pores. Ind. Eng. Chem. Res. 45 6953.
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 6953
    • Dechadilok, P.1    Deen, W.2
  • 58
    • 0023422845 scopus 로고
    • Hindered transport of large molecules in liquid-filled pores
    • W.M. Deen (1987) Hindered transport of large molecules in liquid-filled pores. AIChE J. 33 1409-1425.
    • (1987) AIChE J. , vol.33 , pp. 1409-1425
    • Deen, W.M.1
  • 61
    • 46149096186 scopus 로고    scopus 로고
    • Computer program for simulation of mass transport in nanofiltration membranes
    • V. Geraldes and A.M. Brites (2008) Computer program for simulation of mass transport in nanofiltration membranes. J. Membr. Sci. 321 172-182.
    • (2008) J. Membr. Sci. , vol.321 , pp. 172-182
    • Geraldes, V.1    Brites, A.M.2
  • 63
    • 1542304276 scopus 로고
    • Hindered sedimentation diffusion and dispersion coefficient for Brownian spheres in circular cylindrical pores
    • G.M. Mavrovouniotis and H. Brenner (1988) Hindered sedimentation diffusion and dispersion coefficient for Brownian spheres in circular cylindrical pores. J. Colloid Interface Sci. 124 269.
    • (1988) J. Colloid Interface Sci. , vol.124 , pp. 269
    • Mavrovouniotis, G.M.1    Brenner, H.2
  • 64
    • 0033213547 scopus 로고    scopus 로고
    • Modeling of liquid/liquid separation by pervaporation: toulene from water
    • E.E.B. Meuleman, B. Bosch, M.H.V. Mulder and H. Strathmann (1999) Modeling of liquid/liquid separation by pervaporation: toulene from water. AIChE J. 45 2153-2160.
    • (1999) AIChE J. , vol.45 , pp. 2153-2160
    • Meuleman, E.E.B.1    Bosch, B.2    Mulder, M.H.V.3    Strathmann, H.4
  • 65
    • 0005664809 scopus 로고
    • Pervaporation Separation of Ethanol–Water and Isomeric Xylenes.
    • University of Twente, The Netherlands.
    • Mulder, M. (1981). Pervaporation Separation of Ethanol–Water and Isomeric Xylenes. PhD Thesis, University of Twente, The Netherlands.
    • (1981) PhD Thesis,
    • Mulder, M.1
  • 66
    • 1842710223 scopus 로고    scopus 로고
    • Nonlinear, coupled mass transfer through a dense membrane
    • E. Nagy (2004) Nonlinear, coupled mass transfer through a dense membrane. Desalination 163 345-354.
    • (2004) Desalination , vol.163 , pp. 345-354
    • Nagy, E.1
  • 67
    • 32644467056 scopus 로고    scopus 로고
    • Binary, coupled mass transfer with variable diffusivity through cylindrical membrane
    • E. Nagy (2006) Binary, coupled mass transfer with variable diffusivity through cylindrical membrane. J. Membr. Sci. 274 159-168.
    • (2006) J. Membr. Sci. , vol.274 , pp. 159-168
    • Nagy, E.1
  • 68
    • 0032046569 scopus 로고    scopus 로고
    • Lumen mass transfer in hollow fiber membrane processes with nonlinear boundary conditions
    • Y. Qin and J.M.S. Cabral (1998) Lumen mass transfer in hollow fiber membrane processes with nonlinear boundary conditions. AIChE J. 41 836-848.
    • (1998) AIChE J. , vol.41 , pp. 836-848
    • Qin, Y.1    Cabral, J.M.S.2
  • 69
    • 0032572024 scopus 로고    scopus 로고
    • Pervaporative extraction of volatile organic compounds from aqueous systems with use of a tubular transverse flow module. Part II. Experimental results
    • J. Smart, V.M. Starov, R.C. Schucker and D.R. Lloyd (1998) Pervaporative extraction of volatile organic compounds from aqueous systems with use of a tubular transverse flow module. Part II. Experimental results. J. Membr. Sci. 143 159-179.
    • (1998) J. Membr. Sci. , vol.143 , pp. 159-179
    • Smart, J.1    Starov, V.M.2    Schucker, R.C.3    Lloyd, D.R.4
  • 70
  • 74
    • 0032477477 scopus 로고    scopus 로고
    • Sorption and diffusion of volatile organic compounds in polydimethylsiloxane membranes
    • M.V. Chandak, Y.S. Lin, W. Ji and R.J. Higgins (1998) Sorption and diffusion of volatile organic compounds in polydimethylsiloxane membranes. J. Appl. Polym. Sci. 67 165-175.
    • (1998) J. Appl. Polym. Sci. , vol.67 , pp. 165-175
    • Chandak, M.V.1    Lin, Y.S.2    Ji, W.3    Higgins, R.J.4
  • 77
    • 0030596620 scopus 로고    scopus 로고
    • The engaged species induced clustering (ENSIC) model: a unified mechanistic approach of sorption phenomena in polymers
    • F. Favre, Q.T. Nguyen, R. Clément and J. Néel (1996) The engaged species induced clustering (ENSIC) model: a unified mechanistic approach of sorption phenomena in polymers. J. Membr. Sci. 117 227-236.
    • (1996) J. Membr. Sci. , vol.117 , pp. 227-236
    • Favre, F.1    Nguyen, Q.T.2    Clément, R.3    Néel, J.4
  • 78
    • 74949144688 scopus 로고    scopus 로고
    • Simulation of kinetic curves in mass transport phenomena for a concentration-dependent diffusion coefficient in polymer membranes
    • N. Follain, J.-M. Valleton, L. Lebrun, B. Alexandre, P. Schaetzel, M. Metayer, et al. (2010) Simulation of kinetic curves in mass transport phenomena for a concentration-dependent diffusion coefficient in polymer membranes. J. Membr. Sci. 349 195-207.
    • (2010) J. Membr. Sci. , vol.349 , pp. 195-207
    • Follain, N.1    Valleton, J.-M.2    Lebrun, L.3    Alexandre, B.4    Schaetzel, P.5    Metayer, M.6
  • 79
    • 38349063236 scopus 로고    scopus 로고
    • Modeling of volatile organic compounds removal from water by pervaporation process
    • A.A. Ghoreyshi, M. Jahanshahi and K. Peyvandi (2008) Modeling of volatile organic compounds removal from water by pervaporation process. Desalination 222 410-418.
    • (2008) Desalination , vol.222 , pp. 410-418
    • Ghoreyshi, A.A.1    Jahanshahi, M.2    Peyvandi, K.3
  • 81
    • 0028389062 scopus 로고
    • A generalized solution-diffusion model of the pervaporation process through composite membrane
    • A. Heintz and W. Stephan (1994) A generalized solution-diffusion model of the pervaporation process through composite membrane. J. Membr. Sci. 89 153-169.
    • (1994) J. Membr. Sci. , vol.89 , pp. 153-169
    • Heintz, A.1    Stephan, W.2
  • 82
    • 0242548491 scopus 로고    scopus 로고
    • Description of binary liquid mixtures transport through nonporous membrane by modified Maxwell–Stefan equation
    • P. Izák, L. Bartovská, K. Friess, M. Sipek and P. Uchytil (2003) Description of binary liquid mixtures transport through nonporous membrane by modified Maxwell–Stefan equation. J. Membr. Sci. 214 293-309.
    • (2003) J. Membr. Sci. , vol.214 , pp. 293-309
    • Izák, P.1    Bartovská, L.2    Friess, K.3    Sipek, M.4    Uchytil, P.5
  • 83
    • 0008488737 scopus 로고
    • Model for sorption of mixed gases in glassy polymers
    • W.J. Koros (1980) Model for sorption of mixed gases in glassy polymers. J. Polym. Sci. Phys. Ed. 18 981-992.
    • (1980) J. Polym. Sci. Phys. Ed. , vol.18 , pp. 981-992
    • Koros, W.J.1
  • 84
    • 0019346662 scopus 로고
    • High-pressure sorption of carbon dioxide in solvent-cast poly(methyl methacrylate) and poly(ethyl methacrylate) films
    • W.J. Koros, G.N. Smith and V.T. Stanett (1981) High-pressure sorption of carbon dioxide in solvent-cast poly(methyl methacrylate) and poly(ethyl methacrylate) films. J. Appl. Polym. Sci. 26 159-170.
    • (1981) J. Appl. Polym. Sci. , vol.26 , pp. 159-170
    • Koros, W.J.1    Smith, G.N.2    Stanett, V.T.3
  • 85
    • 85081312103 scopus 로고    scopus 로고
    • The Maxwell–Stefan approach to mass transfer
    • R. Krishna and J.A. Wesselingh (1997) The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci. 52 862-906.
    • (1997) Chem. Eng. Sci. , vol.52 , pp. 862-906
    • Krishna, R.1    Wesselingh, J.A.2
  • 86
    • 0032489053 scopus 로고    scopus 로고
    • Membrane-based solvent extraction in multicomponent systems
    • A. Kubaczka, A. Burghardt and T. Mokrosz (1998) Membrane-based solvent extraction in multicomponent systems. Chem. Eng. Sci. 53 899-917.
    • (1998) Chem. Eng. Sci. , vol.53 , pp. 899-917
    • Kubaczka, A.1    Burghardt, A.2    Mokrosz, T.3
  • 87
    • 0033213547 scopus 로고    scopus 로고
    • Modeling of liquid/liquid separation by pervaporation: toulene from water
    • E. Meuleman, B.B. Bosch, M.H.V. Mulder and H. Strathmann (1999) Modeling of liquid/liquid separation by pervaporation: toulene from water. AIChE J. 45 2153-2160.
    • (1999) AIChE J. , vol.45 , pp. 2153-2160
    • Meuleman, E.1    Bosch, B.B.2    Mulder, M.H.V.3    Strathmann, H.4
  • 88
    • 0005664809 scopus 로고
    • Pervaporation Separation of Ethanol–Water and of Isomeric Xylenes.
    • University of Twente, The Netherlands.
    • Mulder, M.H.V. (1984) Pervaporation Separation of Ethanol–Water and of Isomeric Xylenes. PhD Thesis, University of Twente, The Netherlands.
    • (1984) PhD Thesis,
    • Mulder, M.H.V.1
  • 89
    • 1842710223 scopus 로고    scopus 로고
    • Nonlinear, coupled mass transfer through a dense membrane
    • E. Nagy (2004) Nonlinear, coupled mass transfer through a dense membrane. Desalination 163 345-354.
    • (2004) Desalination , vol.163 , pp. 345-354
    • Nagy, E.1
  • 90
    • 32644467056 scopus 로고    scopus 로고
    • Binary, coupled mass transfer with variable diffusivity through cylindrical membrane
    • E. Nagy (2006) Binary, coupled mass transfer with variable diffusivity through cylindrical membrane. J. Membr. Sci. 274 159-168.
    • (2006) J. Membr. Sci. , vol.274 , pp. 159-168
    • Nagy, E.1
  • 91
    • 56349091485 scopus 로고    scopus 로고
    • Mass transport with varying diffusion and solubility coefficient through a catalytic membrane layer
    • E. Nagy (2008) Mass transport with varying diffusion and solubility coefficient through a catalytic membrane layer. Chem. Eng. Res. Des. 86 723-730.
    • (2008) Chem. Eng. Res. Des. , vol.86 , pp. 723-730
    • Nagy, E.1
  • 92
    • 0016943644 scopus 로고
    • Effect of partially immobilizing sorption on permeability and the diffusion time lag
    • D.R. Paul and W.J. Koros (1976) Effect of partially immobilizing sorption on permeability and the diffusion time lag. J. Polym. Sci. Phys. Ed. 14 675-685.
    • (1976) J. Polym. Sci. Phys. Ed. , vol.14 , pp. 675-685
    • Paul, D.R.1    Koros, W.J.2
  • 93
    • 7444221298 scopus 로고    scopus 로고
    • A simplified solution-diffusion theory in pervaporation: the total solvent volume fraction model
    • P. Schaetzel, C. Vauclair, Q.T. Nguyen and R. Bouzerar (2004) A simplified solution-diffusion theory in pervaporation: the total solvent volume fraction model. J. Membr. Sci. 244 117-127.
    • (2004) J. Membr. Sci. , vol.244 , pp. 117-127
    • Schaetzel, P.1    Vauclair, C.2    Nguyen, Q.T.3    Bouzerar, R.4
  • 94
    • 33845308191 scopus 로고    scopus 로고
    • Measurement of sorption and diffusion in nonporous membranes by transient permeation experiments
    • M.R. Shah, R.D. Noble and D.E. Clough (2007) Measurement of sorption and diffusion in nonporous membranes by transient permeation experiments. J. Membr. Sci. 287 111-118.
    • (2007) J. Membr. Sci. , vol.287 , pp. 111-118
    • Shah, M.R.1    Noble, R.D.2    Clough, D.E.3
  • 98
    • 0033103638 scopus 로고    scopus 로고
    • Modeling permeation of binary mixtures through zeolite membranes
    • J.M. van den Graaf, F. Kapteijn and J.A. Moulijn (1999) Modeling permeation of binary mixtures through zeolite membranes. AIChE J. 45 497.
    • (1999) AIChE J. , vol.45 , pp. 497
    • van den Graaf, J.M.1    Kapteijn, F.2    Moulijn, J.A.3
  • 101
    • 0001559113 scopus 로고
    • Absorption by simultaneous diffusion and chemical reaction
    • P.V. Danckwerts (1950) Absorption by simultaneous diffusion and chemical reaction. Trans. Faraday Soc. 46 300-305.
    • (1950) Trans. Faraday Soc. , vol.46 , pp. 300-305
    • Danckwerts, P.V.1
  • 103
    • 1842825331 scopus 로고    scopus 로고
    • Design and modeling of immobilized biocatalytic reactors
    • J.M.S. Cabral, M. Mota, J. Tramper (Eds), London: Taylor & Francis
    • B.S. Ferreira, P. Fernandes and J.M.S. Cabral (2001) Design and modeling of immobilized biocatalytic reactors. J.M.S. Cabral, M. Mota, J. Tramper (Eds) Multiphase bioreactor design London: Taylor & Francis 85-180.
    • (2001) Multiphase bioreactor design , pp. 85-180
    • Ferreira, B.S.1    Fernandes, P.2    Cabral, J.M.S.3
  • 104
    • 0035863962 scopus 로고    scopus 로고
    • Porous ceramic membranes for catalytic reactors—overview and new ideas
    • A. Julbe, D. Farusseng and C. Guizard (2001) Porous ceramic membranes for catalytic reactors—overview and new ideas. J. Membr. Sci. 181 3-20.
    • (2001) J. Membr. Sci. , vol.181 , pp. 3-20
    • Julbe, A.1    Farusseng, D.2    Guizard, C.3
  • 106
    • 0033007837 scopus 로고    scopus 로고
    • Heterogeneous modeling of gas absorption in emulsion
    • A. Mehra (1999) Heterogeneous modeling of gas absorption in emulsion. Ind. Eng. Chem. Res. 38 2460-2468.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 2460-2468
    • Mehra, A.1
  • 108
    • 0036368254 scopus 로고    scopus 로고
    • Three-phase oxygen absorption and its effect on fermentation
    • E. Nagy (2002) Three-phase oxygen absorption and its effect on fermentation. Adv. Biochem. Eng. Biotechnol. 75 51-81.
    • (2002) Adv. Biochem. Eng. Biotechnol. , vol.75 , pp. 51-81
    • Nagy, E.1
  • 109
    • 32644467056 scopus 로고    scopus 로고
    • Binary, coupled mass transfer with variable diffusivity through cylindrical membrane
    • E. Nagy (2006) Binary, coupled mass transfer with variable diffusivity through cylindrical membrane. J. Membr. Sci. 274 159-168.
    • (2006) J. Membr. Sci. , vol.274 , pp. 159-168
    • Nagy, E.1
  • 110
    • 34247493722 scopus 로고    scopus 로고
    • Mass transfer through a dense, polymeric, catalytic membrane layer with dispersed catalyst
    • E. Nagy (2007) Mass transfer through a dense, polymeric, catalytic membrane layer with dispersed catalyst. Ind. Eng. Chem. Res. 46 2295-2306.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2295-2306
    • Nagy, E.1
  • 111
    • 56349091485 scopus 로고    scopus 로고
    • Mass transport with varying diffusion- and solubility coefficient through a catalytic membrane layer
    • E. Nagy (2008) Mass transport with varying diffusion- and solubility coefficient through a catalytic membrane layer. Chem. Eng. Res. Design 86 723-730.
    • (2008) Chem. Eng. Res. Design , vol.86 , pp. 723-730
    • Nagy, E.1
  • 112
    • 78650513700 scopus 로고    scopus 로고
    • Mathematical Modeling of Biochemical Membrane Reactors
    • E. Drioli, L. Giorno (Eds), Weinheim: Wiley-VCH
    • E. Nagy (2009) Mathematical Modeling of Biochemical Membrane Reactors. E. Drioli, L. Giorno (Eds) Membrane Operations, Innovative Separations and Transformations Weinheim: Wiley-VCH 309-334.
    • (2009) Membrane Operations, Innovative Separations and Transformations , pp. 309-334
    • Nagy, E.1
  • 113
    • 77955917833 scopus 로고    scopus 로고
    • Convective and diffusive mass transport through anisotropic, capillary membrane
    • E. Nagy (2010) Convective and diffusive mass transport through anisotropic, capillary membrane. Chem. Eng. Process. Process Intens. 49 716-721.
    • (2010) Chem. Eng. Process. Process Intens. , vol.49 , pp. 716-721
    • Nagy, E.1
  • 114
    • 0028992164 scopus 로고
    • Three-phase mass transfer: Improved pseudo-homogeneous model
    • E. Nagy and A. Moser (1995) Three-phase mass transfer: Improved pseudo-homogeneous model. AIChE J. 41 23-34.
    • (1995) AIChE J. , vol.41 , pp. 23-34
    • Nagy, E.1    Moser, A.2
  • 115
    • 0024859475 scopus 로고
    • Spherical effect on mass transfer between fine solid particles and liquid accompanied by chemical reaction
    • E. Nagy, T. Blickle and A. Ujhidy (1989) Spherical effect on mass transfer between fine solid particles and liquid accompanied by chemical reaction. Chem. Eng. Sci. 44 198-201.
    • (1989) Chem. Eng. Sci. , vol.44 , pp. 198-201
    • Nagy, E.1    Blickle, T.2    Ujhidy, A.3
  • 116
    • 49049137251 scopus 로고
    • Mass transfer accompanied by first order intermediate reaction rate in two phase cocurrent flow with axial dispersion
    • E. Nagy, T. Blickle, A. Ujhidy and K. Horváth (1982) Mass transfer accompanied by first order intermediate reaction rate in two phase cocurrent flow with axial dispersion. Chem. Eng. Sci. 37 1817-1819.
    • (1982) Chem. Eng. Sci. , vol.37 , pp. 1817-1819
    • Nagy, E.1    Blickle, T.2    Ujhidy, A.3    Horváth, K.4
  • 117
    • 0000063012 scopus 로고    scopus 로고
    • Dense organic catalytic membrane for fine chemical synthesis
    • I.F.J. Vancelecom and P.A. Jacobs (2000) Dense organic catalytic membrane for fine chemical synthesis. Catalysis Today 56 147-157.
    • (2000) Catalysis Today , vol.56 , pp. 147-157
    • Vancelecom, I.F.J.1    Jacobs, P.A.2
  • 118
    • 0035872649 scopus 로고    scopus 로고
    • Hydration of α-pinene over zeolites and activated carbons dispersed in polymeric membranes
    • J. Vital, A.M. Ramos, I.F. Silva, H. Valenete and J.E. Castanheiro (2001) Hydration of α-pinene over zeolites and activated carbons dispersed in polymeric membranes. Catalysis Today 67 217-223.
    • (2001) Catalysis Today , vol.67 , pp. 217-223
    • Vital, J.1    Ramos, A.M.2    Silva, I.F.3    Valenete, H.4    Castanheiro, J.E.5
  • 119
    • 0035865831 scopus 로고    scopus 로고
    • Alkene epoxidation with peroxide in a catalytic membrane reactor: a theoretical study
    • A.A. Yawalkar, V.G. Pangarkar and G.V. Baron (2001) Alkene epoxidation with peroxide in a catalytic membrane reactor: a theoretical study. J. Membr. Sci. 182 129-213.
    • (2001) J. Membr. Sci. , vol.182 , pp. 129-213
    • Yawalkar, A.A.1    Pangarkar, V.G.2    Baron, G.V.3
  • 120
    • 57549117137 scopus 로고    scopus 로고
    • Flow-through catalytic membrane reactors—principles and applications
    • T. Westermann and T. Melin (2009) Flow-through catalytic membrane reactors—principles and applications. Chem. Eng. Process. 48 17-28.
    • (2009) Chem. Eng. Process. , vol.48 , pp. 17-28
    • Westermann, T.1    Melin, T.2
  • 122
    • 0034712352 scopus 로고    scopus 로고
    • Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance
    • O.M. Ilinitch, F.P. Cuperus, L.V. Nosova and E.N. Gribov (2000) Catalytic membrane in reduction of aqueous nitrates: operational principles and catalytic performance. Catalysis Today 56 137-145.
    • (2000) Catalysis Today , vol.56 , pp. 137-145
    • Ilinitch, O.M.1    Cuperus, F.P.2    Nosova, L.V.3    Gribov, E.N.4
  • 123
    • 77955309509 scopus 로고    scopus 로고
    • The effect of the concentration polarization and a membrane layer mass transport on the membrane separation
    • E. Nagy (2007) The effect of the concentration polarization and a membrane layer mass transport on the membrane separation. J. Appl. Membr. Sci. 6 1-8.
    • (2007) J. Appl. Membr. Sci. , vol.6 , pp. 1-8
    • Nagy, E.1
  • 124
    • 34247493722 scopus 로고    scopus 로고
    • Mass transport through a dense, polymeric, catalytic membrane layer with dispersed catalyst
    • E. Nagy (2007) Mass transport through a dense, polymeric, catalytic membrane layer with dispersed catalyst. Ind. Eng. Chem. Res. 46 2295-2306.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2295-2306
    • Nagy, E.1
  • 125
    • 78650513700 scopus 로고    scopus 로고
    • Mathematical Modeling of Biochemical Membrane Reactors
    • E. Drioli, L. Giorno (Eds), Weinheim: Wiley-VCH
    • E. Nagy (2009) Mathematical Modeling of Biochemical Membrane Reactors. E. Drioli, L. Giorno (Eds) Membrane Operations, Innovative Separations and Transformations Weinheim: Wiley-VCH 309-334.
    • (2009) Membrane Operations, Innovative Separations and Transformations , pp. 309-334
    • Nagy, E.1
  • 126
    • 67650287918 scopus 로고    scopus 로고
    • Basic equations of mass transfer through biocatalytic membrane layer
    • E. Nagy (2009) Basic equations of mass transfer through biocatalytic membrane layer. Asia-Pacific J. Chem. Eng. 4 270-278.
    • (2009) Asia-Pacific J. Chem. Eng. , vol.4 , pp. 270-278
    • Nagy, E.1
  • 127
    • 76049104288 scopus 로고    scopus 로고
    • Mass transport through a convection flow catalytic membrane layer with dispersed nanometer-sized catalyst
    • E. Nagy (2010) Mass transport through a convection flow catalytic membrane layer with dispersed nanometer-sized catalyst. Ind. Eng. Chem. Res. 49 1057-1062.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 1057-1062
    • Nagy, E.1
  • 128
    • 77955309509 scopus 로고    scopus 로고
    • The effect of the concentration polarization and the membrane layer mass transport on the membrane separation
    • E. Nagy and G. Borbély (2007) The effect of the concentration polarization and the membrane layer mass transport on the membrane separation. J. Appl. Membr. Sci. Technol. 6 9-16.
    • (2007) J. Appl. Membr. Sci. Technol. , vol.6 , pp. 9-16
    • Nagy, E.1    Borbély, G.2
  • 129
    • 67650708584 scopus 로고    scopus 로고
    • Mass transport through biocatalytic membrane reactors
    • E. Nagy and E. Kulcsár (2009) Mass transport through biocatalytic membrane reactors. Desalination 245 422-436.
    • (2009) Desalination , vol.245 , pp. 422-436
    • Nagy, E.1    Kulcsár, E.2
  • 130
    • 32644467056 scopus 로고    scopus 로고
    • Binary, coupled mass transfer with variable diffusivity through cylindrical membrane
    • E. Nagy (2006) Binary, coupled mass transfer with variable diffusivity through cylindrical membrane. J. Membr. Sci. 274 159-168.
    • (2006) J. Membr. Sci. , vol.274 , pp. 159-168
    • Nagy, E.1
  • 131
    • 56349091485 scopus 로고    scopus 로고
    • Mass transport with varying diffusion- and solubility coefficient through a catalytic membrane layer
    • E. Nagy (2008) Mass transport with varying diffusion- and solubility coefficient through a catalytic membrane layer. Chem. Eng. Res. Design 86 723-730.
    • (2008) Chem. Eng. Res. Design , vol.86 , pp. 723-730
    • Nagy, E.1
  • 132
    • 67650287918 scopus 로고    scopus 로고
    • Basic equations of mass transfer through biocatalytic membrane layer
    • E. Nagy (2009) Basic equations of mass transfer through biocatalytic membrane layer. Asia-Pacific J. Chem. Eng. 4 270-278.
    • (2009) Asia-Pacific J. Chem. Eng. , vol.4 , pp. 270-278
    • Nagy, E.1
  • 133
    • 62249090228 scopus 로고    scopus 로고
    • Mass transport through anisotropic membrane layer
    • E. Nagy and G. Borbély (2009) Mass transport through anisotropic membrane layer. Desalination 240 54-63.
    • (2009) Desalination , vol.240 , pp. 54-63
    • Nagy, E.1    Borbély, G.2
  • 136
    • 0025388370 scopus 로고
    • Modeling analysis of an intercalated-spiral alternate-dead-ended hollow-fiber bioreactor for mammalian cell culture
    • J.D. Brotheton and P.C. Chau (1990) Modeling analysis of an intercalated-spiral alternate-dead-ended hollow-fiber bioreactor for mammalian cell culture. Biotechnol. Bioeng. 35 375-394.
    • (1990) Biotechnol. Bioeng. , vol.35 , pp. 375-394
    • Brotheton, J.D.1    Chau, P.C.2
  • 137
    • 0037206226 scopus 로고    scopus 로고
    • A theoretical analysis of transport phenomena in a hollow fiber membrane bioreactor with immobilized biocatalyst
    • V. Calabró, S. Curcio and G. Iorio (2002) A theoretical analysis of transport phenomena in a hollow fiber membrane bioreactor with immobilized biocatalyst. J. Membr. Sci. 206 217-241.
    • (2002) J. Membr. Sci. , vol.206 , pp. 217-241
    • Calabró, V.1    Curcio, S.2    Iorio, G.3
  • 138
    • 1442264746 scopus 로고    scopus 로고
    • A new Navier–Stokes and Darcy’s law combined model for fluid flow in crossflow filtration tubular membrane
    • K. Damak, A. Ayadi, B. Zeghmati and P. Schmitz (2004) A new Navier–Stokes and Darcy’s law combined model for fluid flow in crossflow filtration tubular membrane. Desalination 161 67-77.
    • (2004) Desalination , vol.161 , pp. 67-77
    • Damak, K.1    Ayadi, A.2    Zeghmati, B.3    Schmitz, P.4
  • 139
    • 0035975734 scopus 로고    scopus 로고
    • Flow and mass transfer modeling of nanofiltration
    • V. Geraldes, V. Semiato and M.N. de Pinho (2001) Flow and mass transfer modeling of nanofiltration. J. Membr. Sci. 191 109-128.
    • (2001) J. Membr. Sci. , vol.191 , pp. 109-128
    • Geraldes, V.1    Semiato, V.2    de Pinho, M.N.3
  • 140
    • 34548357205 scopus 로고    scopus 로고
    • Momentum transfer inside a vertically oriented capillary membrane bioreactor
    • B. Godongwana, M.S. Sheldon and D.M. Solomons (2007) Momentum transfer inside a vertically oriented capillary membrane bioreactor. J. Membr. Sci. 303 86-99.
    • (2007) J. Membr. Sci. , vol.303 , pp. 86-99
    • Godongwana, B.1    Sheldon, M.S.2    Solomons, D.M.3
  • 141
    • 0025571143 scopus 로고
    • Theoretical analysis of convective flow profiles in a hollow-fiber membrane bioreactor
    • L.J. Kelsey, M.R. Pillarella and A.L. Zydney (1990) Theoretical analysis of convective flow profiles in a hollow-fiber membrane bioreactor. Chem. Eng. Sci. 45 3211-3220.
    • (1990) Chem. Eng. Sci. , vol.45 , pp. 3211-3220
    • Kelsey, L.J.1    Pillarella, M.R.2    Zydney, A.L.3
  • 142
    • 3242755049 scopus 로고    scopus 로고
    • Effects of free convection on three-dimensional protein transport in hollow-fiber bioreactor
    • M. Labecki, J.M. Piret and B.D. Bowen (2004) Effects of free convection on three-dimensional protein transport in hollow-fiber bioreactor. AIChE J. 50 1974-1990.
    • (2004) AIChE J. , vol.50 , pp. 1974-1990
    • Labecki, M.1    Piret, J.M.2    Bowen, B.D.3
  • 143
    • 0041668115 scopus 로고    scopus 로고
    • Modeling and simulation of enzymatic membrane reactor for kinetic resolution of ibuprofen ester
    • W.S. Long, S. Bhatia and A. Kamaruddin (2003) Modeling and simulation of enzymatic membrane reactor for kinetic resolution of ibuprofen ester. J. Membr. Sci. 209 69-88.
    • (2003) J. Membr. Sci. , vol.209 , pp. 69-88
    • Long, W.S.1    Bhatia, S.2    Kamaruddin, A.3
  • 144
    • 0242498514 scopus 로고    scopus 로고
    • A general approach to modeling membrane modules
    • J. Marriott and E. Sorensen (2003) A general approach to modeling membrane modules. Chem. Eng. Sci. 58 4975-4990.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 4975-4990
    • Marriott, J.1    Sorensen, E.2
  • 145
    • 0033528051 scopus 로고    scopus 로고
    • Theoretical analysis of the influence of the axial variation of the transmembrane pressure in cross-flow filtration of rigid spheres
    • M. Mondor and C. Moresoli (1999) Theoretical analysis of the influence of the axial variation of the transmembrane pressure in cross-flow filtration of rigid spheres. J. Membr. Sci. 152 71-87.
    • (1999) J. Membr. Sci. , vol.152 , pp. 71-87
    • Mondor, M.1    Moresoli, C.2
  • 146
    • 0037056666 scopus 로고    scopus 로고
    • Analysis of mass transfer in hollow-fiber membranes,
    • 147–152.
    • Nagy E., and Hadik P. (2002) Analysis of mass transfer in hollow-fiber membranes, Desalination. 145, 147–152.
    • (2002) Desalination. , vol.145
    • Nagy, E.1    Hadik, P.2
  • 147
    • 0026416462 scopus 로고
    • Model of oxygen transport limitations in hollow fiber bioreactors
    • J.M. Piret and C.L. Cooney (1990) Model of oxygen transport limitations in hollow fiber bioreactors. Biotechnol. Bioeng. 37 80-92.
    • (1990) Biotechnol. Bioeng. , vol.37 , pp. 80-92
    • Piret, J.M.1    Cooney, C.L.2
  • 148
    • 0038466349 scopus 로고    scopus 로고
    • Finite element modeling of concentration profiles in flow domains with curved porous boundaries
    • C.J. Richardson and V. Nassehi (2003) Finite element modeling of concentration profiles in flow domains with curved porous boundaries. Chem. Eng. Sci. 58 2491-2503.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 2491-2503
    • Richardson, C.J.1    Nassehi, V.2
  • 149
    • 0032503604 scopus 로고    scopus 로고
    • A new model for the calculation of the limiting flux in ultrafiltration
    • L. Song (1998) A new model for the calculation of the limiting flux in ultrafiltration. J. Membr. Sci. 144 173-185.
    • (1998) J. Membr. Sci. , vol.144 , pp. 173-185
    • Song, L.1
  • 150
    • 0037213766 scopus 로고    scopus 로고
    • Techniques for computational fluid dynamics modeling of flow in membrane channels
    • D.E. Wiley and D.F. Flechter (2003) Techniques for computational fluid dynamics modeling of flow in membrane channels. J. Membr. Sci. 211 127-137.
    • (2003) J. Membr. Sci. , vol.211 , pp. 127-137
    • Wiley, D.E.1    Flechter, D.F.2
  • 152
    • 0037086789 scopus 로고    scopus 로고
    • Catalytic membrane reactors for the oxidehydrogenation of propane: experimental and modeling study
    • A. Bottino, G. Capannelli and A. Comite (2002) Catalytic membrane reactors for the oxidehydrogenation of propane: experimental and modeling study. J. Membr. Sci. 197 75-88.
    • (2002) J. Membr. Sci. , vol.197 , pp. 75-88
    • Bottino, A.1    Capannelli, G.2    Comite, A.3
  • 153
    • 35948940853 scopus 로고    scopus 로고
    • Simulation study of water gas shift reaction in a membrane reactor
    • A. Brunetti, A. Caravella, G. Barbieri and E. Drioli (2007) Simulation study of water gas shift reaction in a membrane reactor. J. Membr. Sci. 306 329-340.
    • (2007) J. Membr. Sci. , vol.306 , pp. 329-340
    • Brunetti, A.1    Caravella, A.2    Barbieri, G.3    Drioli, E.4
  • 154
    • 67649246605 scopus 로고    scopus 로고
    • Upgrading of syngas mixture for pure hydrogen production in a Pd–Ag membrane reactor
    • A. Brunetti, G. Barbieri and E. Drioli (2009) Upgrading of syngas mixture for pure hydrogen production in a Pd–Ag membrane reactor. Chem. Eng. Sci. 64 3448-3454.
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 3448-3454
    • Brunetti, A.1    Barbieri, G.2    Drioli, E.3
  • 155
    • 33746216141 scopus 로고    scopus 로고
    • Membrane processes in biotechnology
    • C. Charcosset (2006) Membrane processes in biotechnology. Biotechnol. Adv. 24 482-492.
    • (2006) Biotechnol. Adv. , vol.24 , pp. 482-492
    • Charcosset, C.1
  • 156
    • 0346156128 scopus 로고    scopus 로고
    • Catalytic reactors based on porous ceramic membranes
    • J. Coronas and J. Santamaría (1999) Catalytic reactors based on porous ceramic membranes. Catalysis Today 51 377-389.
    • (1999) Catalysis Today , vol.51 , pp. 377-389
    • Coronas, J.1    Santamaría, J.2
  • 157
    • 3543105533 scopus 로고    scopus 로고
    • A review of catalytic membrane layers for gas/liquid reactions
    • R. Dittmeyer, K. Avajda and M. Reif (2004) A review of catalytic membrane layers for gas/liquid reactions. Topics Catalysis 29 3-27.
    • (2004) Topics Catalysis , vol.29 , pp. 3-27
    • Dittmeyer, R.1    Avajda, K.2    Reif, M.3
  • 158
    • 77955276490 scopus 로고    scopus 로고
    • Activated sludge model based on modelling of membrane bioreactor (MBR) processes: a critical review with special regards to MBR specificities
    • A. Fenu, G. Guglielmi, J. Jimenez, M. Spérandio, D. Saroj, B. Lesjean, et al. (2010) Activated sludge model based on modelling of membrane bioreactor (MBR) processes: a critical review with special regards to MBR specificities. Water Research 44 4272-4294.
    • (2010) Water Research , vol.44 , pp. 4272-4294
    • Fenu, A.1    Guglielmi, G.2    Jimenez, J.3    Spérandio, M.4    Saroj, D.5    Lesjean, B.6
  • 159
    • 0035975734 scopus 로고    scopus 로고
    • Flow and mass transfer modeling of nanofiltration
    • V. Geraldes, V. Semiao and N.M. de Pinho (2001) Flow and mass transfer modeling of nanofiltration. J. Membr. Sci. 191 109-128.
    • (2001) J. Membr. Sci. , vol.191 , pp. 109-128
    • Geraldes, V.1    Semiao, V.2    de Pinho, N.M.3
  • 160
    • 84882081988 scopus 로고    scopus 로고
    • Applicability of membrane reactor for WGS coal derived gas processing: simulation-based analysis
    • (doi:10.016/j.cattod.2010.11.042)
    • K. Gosiewski and M. Tanczyk (2010) Applicability of membrane reactor for WGS coal derived gas processing: simulation-based analysis. Catalysis Today (doi:10.016/j.cattod.2010.11.042)
    • (2010) Catalysis Today
    • Gosiewski, K.1    Tanczyk, M.2
  • 161
    • 77958103400 scopus 로고    scopus 로고
    • Mathematical simulation of WGS membrane reactor for gas from coal gasification
    • K. Gosiewski, K. Warmuzinski and M. Tanczyk (2010) Mathematical simulation of WGS membrane reactor for gas from coal gasification. Catalysis Today 156 229-236.
    • (2010) Catalysis Today , vol.156 , pp. 229-236
    • Gosiewski, K.1    Warmuzinski, K.2    Tanczyk, M.3
  • 162
    • 28844459837 scopus 로고    scopus 로고
    • Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part II: Mechanistic aspects and kinetic modeling
    • E. Heracleous and A.A. Lemonidou (2006) Ni–Nb–O mixed oxides as highly active and selective catalysts for ethene production via ethane oxidative dehydrogenation. Part II: Mechanistic aspects and kinetic modeling. J. Catalysis 237 175-189.
    • (2006) J. Catalysis , vol.237 , pp. 175-189
    • Heracleous, E.1    Lemonidou, A.A.2
  • 164
    • 0035863962 scopus 로고    scopus 로고
    • Porous ceramic membranes for catalytic reactors—overview and new ideas
    • A. Julbe, D. Farrusseng and C. Guizard Ch. (2001) Porous ceramic membranes for catalytic reactors—overview and new ideas. J. Membr. Sci. 181 3-20.
    • (2001) J. Membr. Sci. , vol.181 , pp. 3-20
    • Julbe, A.1    Farrusseng, D.2    Guizard, C.3
  • 165
    • 0035874630 scopus 로고    scopus 로고
    • On the importance of non-ideal flow effects in the operation of industrial scale adiabatic membrane reactors
    • M.K. Koukou, N. Papayannakos and N.C. Markatos (2001) On the importance of non-ideal flow effects in the operation of industrial scale adiabatic membrane reactors. Chem. Eng. Sci. 83 95-105.
    • (2001) Chem. Eng. Sci. , vol.83 , pp. 95-105
    • Koukou, M.K.1    Papayannakos, N.2    Markatos, N.C.3
  • 169
    • 0242498514 scopus 로고    scopus 로고
    • A general approach to modeling membrane modules
    • J. Marriott and E. Sorensen (2003) A general approach to modeling membrane modules. Chem. Eng. Sci. 58 4975-4990.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 4975-4990
    • Marriott, J.1    Sorensen, E.2
  • 170
    • 32644462580 scopus 로고    scopus 로고
    • Zeolite based films, membranes and membrane reactors: progress and prospects
    • E.E. McLearly, J.C. Jansen and F. Kapteijn (2006) Zeolite based films, membranes and membrane reactors: progress and prospects. Microporous Macroporous Mater. 90 198-220.
    • (2006) Microporous Macroporous Mater. , vol.90 , pp. 198-220
    • McLearly, E.E.1    Jansen, J.C.2    Kapteijn, F.3
  • 171
    • 77958111695 scopus 로고    scopus 로고
    • Integrated analysis of a membrane-based process for hydrogen production from ethanol steam reforming
    • D. Mendes, S. Tobsti, F. Borgognomi, A. Mendes and L.M. Madeira (2010) Integrated analysis of a membrane-based process for hydrogen production from ethanol steam reforming. Catalysis Today 156 102-117.
    • (2010) Catalysis Today , vol.156 , pp. 102-117
    • Mendes, D.1    Tobsti, S.2    Borgognomi, F.3    Mendes, A.4    Madeira, L.M.5
  • 173
    • 0036368211 scopus 로고    scopus 로고
    • High temperature membrane reactors and integrated membrane operations
    • L. Paturzo, A. Basile and E. Drioli (2002) High temperature membrane reactors and integrated membrane operations. Rev. Chem. Eng. 18 511-551.
    • (2002) Rev. Chem. Eng. , vol.18 , pp. 511-551
    • Paturzo, L.1    Basile, A.2    Drioli, E.3
  • 174
    • 0036639729 scopus 로고    scopus 로고
    • Simulation of a catalytic membrane reactor for the oxidative dehydrogenation of butane
    • M. Pedernera, M.J. Alfonso, M. Menéndez and J. Santamaría (2002) Simulation of a catalytic membrane reactor for the oxidative dehydrogenation of butane. Chem. Eng. Sci. 57 2531-2544.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 2531-2544
    • Pedernera, M.1    Alfonso, M.J.2    Menéndez, M.3    Santamaría, J.4
  • 176
  • 179
    • 79953032776 scopus 로고    scopus 로고
    • Membrane bioreactors: two decades of research and implementation
    • (10.1016/j.desal.2010.07.063)
    • A. Santos, W. Ma and S.J. Judd (2010) Membrane bioreactors: two decades of research and implementation. Desalination (10.1016/j.desal.2010.07.063)
    • (2010) Desalination
    • Santos, A.1    Ma, W.2    Judd, S.J.3
  • 182
    • 0347874990 scopus 로고    scopus 로고
    • Kinetic study of oxidative dehydrogenation of butane on V/MgO catalysts
    • C. Téllez, M. Menédez and J. Santamaría (1999) Kinetic study of oxidative dehydrogenation of butane on V/MgO catalysts. J. Catalysis 183 210-221.
    • (1999) J. Catalysis , vol.183 , pp. 210-221
    • Téllez, C.1    Menédez, M.2    Santamaría, J.3
  • 186
    • 78751621065 scopus 로고    scopus 로고
    • New integrated catalytic membrane process for enhanced propylene and polypropylene production
    • Z. Ziaka and S. Vasieiadis (2011) New integrated catalytic membrane process for enhanced propylene and polypropylene production. Sep. Sci. Technol. 46 224-233.
    • (2011) Sep. Sci. Technol. , vol.46 , pp. 224-233
    • Ziaka, Z.1    Vasieiadis, S.2
  • 187
    • 77949567647 scopus 로고    scopus 로고
    • Reactor design for minimizing product inhibition during enzymatic lignocelluloses hydrolysis. II. Quantification of inhibition and suitability of membrane reactors
    • P. Andric, A.S. Meyer, P.A. Jensen and K. Dam-Johanson (2010) Reactor design for minimizing product inhibition during enzymatic lignocelluloses hydrolysis. II. Quantification of inhibition and suitability of membrane reactors. Biotechnol. Adv. 28 407-425.
    • (2010) Biotechnol. Adv. , vol.28 , pp. 407-425
    • Andric, P.1    Meyer, A.S.2    Jensen, P.A.3    Dam-Johanson, K.4
  • 189
    • 0024621726 scopus 로고
    • Membranes and bioreactors: a technical challenge in biotechnology
    • G. Belfort (1989) Membranes and bioreactors: a technical challenge in biotechnology. Biotechnol. Bioeng. 33 1047-1066.
    • (1989) Biotechnol. Bioeng. , vol.33 , pp. 1047-1066
    • Belfort, G.1
  • 191
    • 0025388370 scopus 로고
    • Modeling analysis of an intercalated-spiral alternate-dead-ended hollow fiber bioreactor for mammalian cell cultures
    • J.D. Brotherton and P.C. Chau (1990) Modeling analysis of an intercalated-spiral alternate-dead-ended hollow fiber bioreactor for mammalian cell cultures. Biotechnol. Bioeng. 35 375-394.
    • (1990) Biotechnol. Bioeng. , vol.35 , pp. 375-394
    • Brotherton, J.D.1    Chau, P.C.2
  • 193
    • 0024896764 scopus 로고
    • A general description of flows and pressure in hollow fiber membrane modules
    • W.J. Bruining (1989) A general description of flows and pressure in hollow fiber membrane modules. Chem. Eng. Sci. 44 1441-1447.
    • (1989) Chem. Eng. Sci. , vol.44 , pp. 1441-1447
    • Bruining, W.J.1
  • 194
    • 0001897482 scopus 로고
    • Bioreactor design
    • J.M.S. Cabral, D. Best, L. Boross, J. Tramper (Eds), Switzerland: Harwood Academic Publishers
    • J.M.S. Cabral and J. Tramper (1994) Bioreactor design. J.M.S. Cabral, D. Best, L. Boross, J. Tramper (Eds) Applied Biocatalysis Switzerland: Harwood Academic Publishers 330-370.
    • (1994) Applied Biocatalysis , pp. 330-370
    • Cabral, J.M.S.1    Tramper, J.2
  • 195
    • 0037206226 scopus 로고    scopus 로고
    • A theoretical analysis of transport phenomena in a hollow fiber membrane bioreactor with immobilized biocatalyst
    • V. Calabro, S. Curcio and G. Iorio (2002) A theoretical analysis of transport phenomena in a hollow fiber membrane bioreactor with immobilized biocatalyst. J. Membr. Sci. 206 217-241.
    • (2002) J. Membr. Sci. , vol.206 , pp. 217-241
    • Calabro, V.1    Curcio, S.2    Iorio, G.3
  • 196
    • 33746216141 scopus 로고    scopus 로고
    • Membrane processes in biotechnology: an overview
    • C. Charcosset (2006) Membrane processes in biotechnology: an overview. Biotechnol. Adv. 24 482-492.
    • (2006) Biotechnol. Adv. , vol.24 , pp. 482-492
    • Charcosset, C.1
  • 198
    • 1442264746 scopus 로고    scopus 로고
    • A new Navier–Stokes and Darcy’s law combined model for fluid flow in cross-flow filtration tubular membrane
    • K. Damak, A. Ayadi, B. Zeghmati and P. Schmitz (2004) A new Navier–Stokes and Darcy’s law combined model for fluid flow in cross-flow filtration tubular membrane. Desalination 161 67-77.
    • (2004) Desalination , vol.161 , pp. 67-77
    • Damak, K.1    Ayadi, A.2    Zeghmati, B.3    Schmitz, P.4
  • 199
    • 40749118092 scopus 로고    scopus 로고
    • Monoaromatics removal from polluted water through bioreactors—a review
    • M. Farhadian, D. Duchez, C. Vachelard and C. Larroche (2008) Monoaromatics removal from polluted water through bioreactors—a review. Water Res. 42 1325-1341.
    • (2008) Water Res. , vol.42 , pp. 1325-1341
    • Farhadian, M.1    Duchez, D.2    Vachelard, C.3    Larroche, C.4
  • 200
    • 1842825331 scopus 로고    scopus 로고
    • Design and modeling of immobilized biocatalytic reactors
    • J.M.S. Cabral, M. Mota, J. Tramper (Eds), London: Taylor & Francis
    • B.S. Ferreira, P. Fernandes and J.M.S. Cabral (2001) Design and modeling of immobilized biocatalytic reactors. J.M.S. Cabral, M. Mota, J. Tramper (Eds) Multiphase Bioreactor Design London: Taylor & Francis 85-180.
    • (2001) Multiphase Bioreactor Design , pp. 85-180
    • Ferreira, B.S.1    Fernandes, P.2    Cabral, J.M.S.3
  • 201
    • 0011075401 scopus 로고    scopus 로고
    • Enzymatic membrane reactors
    • J.M.S. Cabral, M. Mota, J. Tramper (Eds), London: Taylor & Francis
    • D.M.F. Frazeres and J.M.S. Cabral (2001) Enzymatic membrane reactors. J.M.S. Cabral, M. Mota, J. Tramper (Eds) Multiphase Bioreactor Design 2001 London: Taylor & Francis 135-184.
    • (2001) Multiphase Bioreactor Design , vol.2001 , pp. 135-184
    • Frazeres, D.M.F.1    Cabral, J.M.S.2
  • 202
    • 0034255703 scopus 로고    scopus 로고
    • Biocatalytic membrane reactors: applications and perspectives
    • L. Giorno and E. Drioli (2000) Biocatalytic membrane reactors: applications and perspectives. Trends Biotechnol. 18 339-349.
    • (2000) Trends Biotechnol. , vol.18 , pp. 339-349
    • Giorno, L.1    Drioli, E.2
  • 204
    • 34247279313 scopus 로고    scopus 로고
    • An innovative approach to improve the performance of a two separate phase enzyme membrane reactor by immobilizing lipase in presence of emulsion
    • L. Giorno, E.D. Amore, R. Mazzei, E. Piacentini, J. Zhang, E. Drioli, et al. (2007) An innovative approach to improve the performance of a two separate phase enzyme membrane reactor by immobilizing lipase in presence of emulsion. J. Membr. Sci. 295 95-101.
    • (2007) J. Membr. Sci. , vol.295 , pp. 95-101
    • Giorno, L.1    Amore, E.D.2    Mazzei, R.3    Piacentini, E.4    Zhang, J.5    Drioli, E.6
  • 205
    • 34548357205 scopus 로고    scopus 로고
    • Momentum transfer inside a vertically oriented capillary membrane bioreactor
    • B. Godongwana, M.S. Sheldon and D.M. Solomons (2007) Momentum transfer inside a vertically oriented capillary membrane bioreactor. J. Membr. Sci. 303 86-99.
    • (2007) J. Membr. Sci. , vol.303 , pp. 86-99
    • Godongwana, B.1    Sheldon, M.S.2    Solomons, D.M.3
  • 206
    • 33747066750 scopus 로고    scopus 로고
    • Experimental and theoretical study of membrane-aerated biofilm reactor behavior under different modes of oxygen supply for the treatment of synthetic wastewater.
    • 5268–5281.
    • González-Brambila, M., Monroy, O., and López-Isunza (2006) Experimental and theoretical study of membrane-aerated biofilm reactor behavior under different modes of oxygen supply for the treatment of synthetic wastewater. Chem. Eng. Sci., 61, 5268–5281.
    • (2006) Chem. Eng. Sci., , vol.61
    • González-Brambila, M.1    Monroy, O.2
  • 207
    • 0026220304 scopus 로고
    • Enzymatic synthesis of n-butil oleate in a hollow fiber membrane reactor
    • M. Habulin and K. Knez (1991) Enzymatic synthesis of n-butil oleate in a hollow fiber membrane reactor. J. Membr. Sci. 61 315-324.
    • (1991) J. Membr. Sci. , vol.61 , pp. 315-324
    • Habulin, M.1    Knez, K.2
  • 209
    • 57649155721 scopus 로고    scopus 로고
    • Estimation of the contribution of immobilized biofilm and suspended biomass to the biodegradation of phenol in membrane contactors
    • R.-S. Juang and H.-C. Kao (2009) Estimation of the contribution of immobilized biofilm and suspended biomass to the biodegradation of phenol in membrane contactors. Biochem. Eng. J. 43 122-128.
    • (2009) Biochem. Eng. J. , vol.43 , pp. 122-128
    • Juang, R.-S.1    Kao, H.-C.2
  • 210
    • 0025571143 scopus 로고
    • Theoretical analysis of convective flow profiles in a hollow fiber membrane bioreactors
    • L.J. Kelsey, M.R. Pillarella and A.L. Zydney (1990) Theoretical analysis of convective flow profiles in a hollow fiber membrane bioreactors. Chem. Eng. Sci. 45 3211-3220.
    • (1990) Chem. Eng. Sci. , vol.45 , pp. 3211-3220
    • Kelsey, L.J.1    Pillarella, M.R.2    Zydney, A.L.3
  • 211
    • 27444447817 scopus 로고    scopus 로고
    • Kinetic modeling of the biodegradation of the aqueous p-xylene in the immobilized soil bioreactor
    • A. Kermanshaipour, D. Karamanev and A. Margaritis (2006) Kinetic modeling of the biodegradation of the aqueous p-xylene in the immobilized soil bioreactor. Biochem. Eng. J. 27 204-211.
    • (2006) Biochem. Eng. J. , vol.27 , pp. 204-211
    • Kermanshaipour, A.1    Karamanev, D.2    Margaritis, A.3
  • 212
    • 0030222826 scopus 로고    scopus 로고
    • Two-dimensional analysis of protein transport in the extracapillary space of hollow-fibre bioreactors
    • M. Labecki, D. Bowen and J.M. Piret (1996) Two-dimensional analysis of protein transport in the extracapillary space of hollow-fibre bioreactors. Chem. Eng. Sci. 51 4197-4213.
    • (1996) Chem. Eng. Sci. , vol.51 , pp. 4197-4213
    • Labecki, M.1    Bowen, D.2    Piret, J.M.3
  • 213
    • 0029395180 scopus 로고
    • Two-dimensional analysis of fluid flow in hollow-fibre modules
    • M. Labecki, J.M. Piret and D. Bowen (1995) Two-dimensional analysis of fluid flow in hollow-fibre modules. Chem. Eng. Sci. 50 3369-3384.
    • (1995) Chem. Eng. Sci. , vol.50 , pp. 3369-3384
    • Labecki, M.1    Piret, J.M.2    Bowen, D.3
  • 214
    • 77957333162 scopus 로고    scopus 로고
    • Nitrification performance in membrane-aerated biofilm reactors differs from conventional biofilm systems
    • S. Lackner, A. Terada, H. Horn, M. Henze and B. Smets (2010) Nitrification performance in membrane-aerated biofilm reactors differs from conventional biofilm systems. Water Res. 44 6073-6084.
    • (2010) Water Res. , vol.44 , pp. 6073-6084
    • Lackner, S.1    Terada, A.2    Horn, H.3    Henze, M.4    Smets, B.5
  • 215
    • 0041668115 scopus 로고    scopus 로고
    • Modeling and simulation of enzymatic membrane reactor for kinetic resolution of ibuprofen ester
    • W.S. Long, S. Bhatia and A. Kamaruddin (2003) Modeling and simulation of enzymatic membrane reactor for kinetic resolution of ibuprofen ester. J. Membr. Sci. 219 69-88.
    • (2003) J. Membr. Sci. , vol.219 , pp. 69-88
    • Long, W.S.1    Bhatia, S.2    Kamaruddin, A.3
  • 217
    • 0037204912 scopus 로고    scopus 로고
    • Active membranes coated with immobilized Candida Antarctica lipase B: preparation and application for continuous butyl butyrate synthesis in organic media
    • P. Lozano, A.B. Perez-Marin, T. De Diego, D. Gomez, D. Paolucci-Jeajean, M.P. Belleville, et al. (2002) Active membranes coated with immobilized Candida Antarctica lipase B: preparation and application for continuous butyl butyrate synthesis in organic media. J. Membr. Sci. 201 55-64.
    • (2002) J. Membr. Sci. , vol.201 , pp. 55-64
    • Lozano, P.1    Perez-Marin, A.B.2    De Diego, T.3    Gomez, D.4    Paolucci-Jeajean, D.5    Belleville, M.P.6
  • 220
    • 35148825139 scopus 로고    scopus 로고
    • Modeling of membrane-aerated biofilm: effect of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification
    • S. Matsumoto, A. Terada and S. Tsuneda (2007) Modeling of membrane-aerated biofilm: effect of C/N ratio, biofilm thickness and surface loading of oxygen on feasibility of simultaneous nitrification and denitrification. Biochem. Eng. J. 37 98-107.
    • (2007) Biochem. Eng. J. , vol.37 , pp. 98-107
    • Matsumoto, S.1    Terada, A.2    Tsuneda, S.3
  • 221
    • 32344434436 scopus 로고    scopus 로고
    • Biofilm reactors
    • J.M.S. Cabral, M. Mota (Eds), Taylor & Francis, London, J. Tramper
    • L.F. Melo and R. Oliveira (2001) Biofilm reactors. J.M.S. Cabral, M. Mota (Eds) Multiphase Bioreactor Design Taylor & Francis, London 271-308. J. Tramper
    • (2001) Multiphase Bioreactor Design , pp. 271-308
    • Melo, L.F.1    Oliveira, R.2
  • 222
    • 67650720423 scopus 로고    scopus 로고
    • Modeling how soluble microbial products (SMP) support heterotropic bacteria in autotroph-based biofilms
    • B.V. Merkey, B.E. Rittmann and D.L. Chopp (2009) Modeling how soluble microbial products (SMP) support heterotropic bacteria in autotroph-based biofilms. J. Theor. Biol. 259 670-683.
    • (2009) J. Theor. Biol. , vol.259 , pp. 670-683
    • Merkey, B.V.1    Rittmann, B.E.2    Chopp, D.L.3
  • 223
    • 0033528051 scopus 로고    scopus 로고
    • Theoretical analysis of the influence of the axial variation of the transmembrane pressure in cross-flow filtration of rigid spheres
    • M. Mondor and C. Moresoli (1999) Theoretical analysis of the influence of the axial variation of the transmembrane pressure in cross-flow filtration of rigid spheres. J. Membr. Sci. 152 71-87.
    • (1999) J. Membr. Sci. , vol.152 , pp. 71-87
    • Mondor, M.1    Moresoli, C.2
  • 224
    • 78650513700 scopus 로고    scopus 로고
    • Mathematical modeling of biochemical membrane reactors
    • E. Drioli, L. Giorno (Eds), Weinheim: Wiley-VCH
    • E. Nagy (2009) Mathematical modeling of biochemical membrane reactors. E. Drioli, L. Giorno (Eds) Membrane Operations, Innovative Separations and Transformations Weinheim: Wiley-VCH 309-334.
    • (2009) Membrane Operations, Innovative Separations and Transformations , pp. 309-334
    • Nagy, E.1
  • 225
    • 67650287918 scopus 로고    scopus 로고
    • Basic equations of mass transfer through biocatalytic membrane layer
    • E. Nagy (2009) Basic equations of mass transfer through biocatalytic membrane layer. Asia-Pacific J. Chem. Eng. 4 270-278.
    • (2009) Asia-Pacific J. Chem. Eng. , vol.4 , pp. 270-278
    • Nagy, E.1
  • 226
    • 67650708584 scopus 로고    scopus 로고
    • Mass transport through biocatalytic membrane reactors
    • E. Nagy and E. Kulcsár (2009) Mass transport through biocatalytic membrane reactors. Desalination 245 422-436.
    • (2009) Desalination , vol.245 , pp. 422-436
    • Nagy, E.1    Kulcsár, E.2
  • 227
    • 84996119537 scopus 로고
    • Forced-flow bioreactor for sucrose inversion using ceramic membrane activated by silanization
    • M. Nakajima and J.P. Cardoso (1989) Forced-flow bioreactor for sucrose inversion using ceramic membrane activated by silanization. Biotechnol. Bioeng. 33 856.
    • (1989) Biotechnol. Bioeng. , vol.33 , pp. 856
    • Nakajima, M.1    Cardoso, J.P.2
  • 228
    • 0034056557 scopus 로고    scopus 로고
    • Substrate counter diffusion and reaction in membrane attached biofilms: mathematical analysis of rate limiting mechanisms
    • C. Nicolella, P. Pavasant and A.G. Livingston (2000) Substrate counter diffusion and reaction in membrane attached biofilms: mathematical analysis of rate limiting mechanisms. Chem. Eng. Sci. 55 1385-1398.
    • (2000) Chem. Eng. Sci. , vol.55 , pp. 1385-1398
    • Nicolella, C.1    Pavasant, P.2    Livingston, A.G.3
  • 229
    • 0026416462 scopus 로고
    • Model of oxygen transport limitations in hollow fiber bioreactors
    • J.M. Piret and C.L. Cooney (1991) Model of oxygen transport limitations in hollow fiber bioreactors. Biotechnol. Bioeng. 37 80-92.
    • (1991) Biotechnol. Bioeng. , vol.37 , pp. 80-92
    • Piret, J.M.1    Cooney, C.L.2
  • 230
    • 0032046569 scopus 로고    scopus 로고
    • Lumen mass transfer in hollow fiber membrane processes with nonlinear boundary conditions
    • V. Qin and M.S. Cabral (1998) Lumen mass transfer in hollow fiber membrane processes with nonlinear boundary conditions. AIChE J. 44 836-848.
    • (1998) AIChE J. , vol.44 , pp. 836-848
    • Qin, V.1    Cabral, M.S.2
  • 231
    • 77950917444 scopus 로고    scopus 로고
    • Mathematical and kinetic modeling of biofilm reactor based on ant colony optimization
    • K.R. Rao, T. Srinivasan and C. Venkateswarlu Ch. (2010) Mathematical and kinetic modeling of biofilm reactor based on ant colony optimization. Process Biochem. 45 961-972.
    • (2010) Process Biochem. , vol.45 , pp. 961-972
    • Rao, K.R.1    Srinivasan, T.2    Venkateswarlu, C.3
  • 234
    • 0033380783 scopus 로고    scopus 로고
    • Hollow fiber enzymic reactors for a two substrate process: analytical modeling and numerical simulations
    • G. Salzman, R. Tadmor, S. Guzy, S. Sideman and N. Lotan (1999) Hollow fiber enzymic reactors for a two substrate process: analytical modeling and numerical simulations. Chem. Eng. Progress 38 289-299.
    • (1999) Chem. Eng. Progress , vol.38 , pp. 289-299
    • Salzman, G.1    Tadmor, R.2    Guzy, S.3    Sideman, S.4    Lotan, N.5
  • 235
    • 79953032776 scopus 로고    scopus 로고
    • Membrane bioreactors: two decades of research and implementation
    • A. Santos, I.W. Ma and S.J. Judd (2010) Membrane bioreactors: two decades of research and implementation. Desalination 273 148-154.
    • (2010) Desalination , vol.273 , pp. 148-154
    • Santos, A.1    Ma, I.W.2    Judd, S.J.3
  • 236
    • 0027112997 scopus 로고
    • An investigation of the diffusion-limited growth of animal cells around single hollow fibers
    • C.A. Sardonini and D. DiBiasio (1992) An investigation of the diffusion-limited growth of animal cells around single hollow fibers. Biotechnol. Bioeng. 40 1233-1242.
    • (1992) Biotechnol. Bioeng. , vol.40 , pp. 1233-1242
    • Sardonini, C.A.1    DiBiasio, D.2
  • 237
    • 1542298193 scopus 로고    scopus 로고
    • Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors
    • H. Satoh, H. Ono, B. Rulin, J. Kamo, S. Okabe and K.-I. Fukushi (2004) Macroscale and microscale analyses of nitrification and denitrification in biofilms attached on membrane aerated biofilm reactors. Water Res. 38 1633-1641.
    • (2004) Water Res. , vol.38 , pp. 1633-1641
    • Satoh, H.1    Ono, H.2    Rulin, B.3    Kamo, J.4    Okabe, S.5    Fukushi, K.-I.6
  • 238
    • 0023363854 scopus 로고
    • Enhanced nutrient transport in hollow fiber perfusion bioreactors
    • J.A. Schonberg and G. Belfort (1987) Enhanced nutrient transport in hollow fiber perfusion bioreactors. Biotechnol. Prog. 3(2), 81-89.
    • (1987) Biotechnol. Prog. , vol.3 , Issue.2 , pp. 81-89
    • Schonberg, J.A.1    Belfort, G.2
  • 239
    • 24944524091 scopus 로고    scopus 로고
    • Immobilisation and biofilm development of Phanerochaete chrysosporium on polysulphone and ceramic membrane
    • M.S. Sheldon and H.J. Small (2005) Immobilisation and biofilm development of Phanerochaete chrysosporium on polysulphone and ceramic membrane. J. Membr. Sci. 263 30-37.
    • (2005) J. Membr. Sci. , vol.263 , pp. 30-37
    • Sheldon, M.S.1    Small, H.J.2
  • 241
    • 30944450556 scopus 로고    scopus 로고
    • State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America
    • W. Yang, N. Cicek and J. Ilg (2006) State-of-the-art of membrane bioreactors: Worldwide research and commercial applications in North America. J. Membr. Sci. 2006(270), 201-211.
    • (2006) J. Membr. Sci. , vol.2006 , Issue.270 , pp. 201-211
    • Yang, W.1    Cicek, N.2    Ilg, J.3
  • 242
    • 77951022506 scopus 로고    scopus 로고
    • Review of mathematical models for biofilm
    • Q. Wang and T. Zhang (2010) Review of mathematical models for biofilm. Solid State Commun. 150 1009-1022.
    • (2010) Solid State Commun. , vol.150 , pp. 1009-1022
    • Wang, Q.1    Zhang, T.2
  • 243
    • 0015981052 scopus 로고
    • A theoretical model for enzymatic catalysis using asymmetric hollow-fiber bioreactors
    • L.R. Waterland, A.S. Michaels and C.R. Robertson (1974) A theoretical model for enzymatic catalysis using asymmetric hollow-fiber bioreactors. AIChE J. 20 50-59.
    • (1974) AIChE J. , vol.20 , pp. 50-59
    • Waterland, L.R.1    Michaels, A.S.2    Robertson, C.R.3
  • 245
    • 0031585719 scopus 로고    scopus 로고
    • The effect of concentration polarization on the separation of volatile organic compounds from water by pervaporation
    • R.W. Baker, J.G. Wijmans, A.L. Athayde, R. Daniels, J.H. Ly and M. Le (1997) The effect of concentration polarization on the separation of volatile organic compounds from water by pervaporation. J. Membr. Sci. 137 159-172.
    • (1997) J. Membr. Sci. , vol.137 , pp. 159-172
    • Baker, R.W.1    Wijmans, J.G.2    Athayde, A.L.3    Daniels, R.4    Ly, J.H.5    Le, M.6
  • 246
    • 0035979493 scopus 로고    scopus 로고
    • Performance of solvent-resistant membranes for non-aqueous systems: solvent permeation results and modeling
    • D. Bhanushali, S. Kloos, C. Kurth and D. Bhattacharyya (2001) Performance of solvent-resistant membranes for non-aqueous systems: solvent permeation results and modeling. J. Membr. Sci. 189 1-21.
    • (2001) J. Membr. Sci. , vol.189 , pp. 1-21
    • Bhanushali, D.1    Kloos, S.2    Kurth, C.3    Bhattacharyya, D.4
  • 247
    • 0343145617 scopus 로고    scopus 로고
    • Concentration polarization, separation factor, and Peclet number in membrane processes
    • S. Bhattacharya and S.-T. Hwang (1997) Concentration polarization, separation factor, and Peclet number in membrane processes. J. Membr. Sci. 173 73-90.
    • (1997) J. Membr. Sci. , vol.173 , pp. 73-90
    • Bhattacharya, S.1    Hwang, S.-T.2
  • 249
    • 0032216128 scopus 로고    scopus 로고
    • Characterization and prediction of nanofiltration membrane performance—a general assessment
    • W.R. Bowen and A.W. Mohammad (1998) Characterization and prediction of nanofiltration membrane performance—a general assessment. Trans IChemE 76(Part A), 885-893.
    • (1998) Trans IChemE , vol.76 , pp. 885-893
    • Bowen, W.R.1    Mohammad, A.W.2
  • 250
    • 0036530850 scopus 로고    scopus 로고
    • Modelling the performance of membrane nanofiltration—critical assessment and model development
    • W.R. Bowen and J.S. Welfoot (2002) Modelling the performance of membrane nanofiltration—critical assessment and model development. Chem. Eng. Sci. 57 1121-1137.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 1121-1137
    • Bowen, W.R.1    Welfoot, J.S.2
  • 251
    • 33744524610 scopus 로고    scopus 로고
    • Transport mechanism of dissolved organic compounds in aqueous solution during nanofiltration
    • L. Braeken, B. Bettens, K. Boussu, P. Van der Meeren, J. Cocquyt, J. Vermant, et al. (2006) Transport mechanism of dissolved organic compounds in aqueous solution during nanofiltration. J. Membr. Sci. 279 311-319.
    • (2006) J. Membr. Sci. , vol.279 , pp. 311-319
    • Braeken, L.1    Bettens, B.2    Boussu, K.3    Van der Meeren, P.4    Cocquyt, J.5    Vermant, J.6
  • 252
    • 0004119451 scopus 로고
    • Mass transport in reverse osmosis
    • U. Merten (Eds), Cambridge: MIT Press
    • P.L.T. Brian (1966) Mass transport in reverse osmosis. U. Merten (Eds) Desalination by Reverse Osmosis Cambridge: MIT Press 181.
    • (1966) Desalination by Reverse Osmosis , pp. 181
    • Brian, P.L.T.1
  • 254
    • 64049089974 scopus 로고    scopus 로고
    • General model for prediction of solvent permeation through organic and inorganic solvent resistant nanofiltration membranes
    • S. Darvishmanesh, A. Buekenhoudt, J. Degréve and B. Van der Bruggen (2009) General model for prediction of solvent permeation through organic and inorganic solvent resistant nanofiltration membranes. J. Membr. Sci. 334 43-49.
    • (2009) J. Membr. Sci. , vol.334 , pp. 43-49
    • Darvishmanesh, S.1    Buekenhoudt, A.2    Degréve, J.3    Van der Bruggen, B.4
  • 255
    • 0342601344 scopus 로고    scopus 로고
    • Modeling of ultrafiltration process for a two-component aqueous solution of low and high (gel-forming) molecular weight solutes
    • S. De and P.K. Bhattacharya (1997) Modeling of ultrafiltration process for a two-component aqueous solution of low and high (gel-forming) molecular weight solutes. J. Membr. Sci. 136 57-69.
    • (1997) J. Membr. Sci. , vol.136 , pp. 57-69
    • De, S.1    Bhattacharya, P.K.2
  • 256
    • 0023422845 scopus 로고
    • Hindered transport of large molecules in liquid-filled pores
    • W.M. Deen (1987) Hindered transport of large molecules in liquid-filled pores. AIChE J. 33 1409-1425.
    • (1987) AIChE J. , vol.33 , pp. 1409-1425
    • Deen, W.M.1
  • 257
    • 33751282370 scopus 로고    scopus 로고
    • A transport model for organophilic nanofiltration
    • M.F.J. Dijkstra, S. Bach and K. Ebert (2006) A transport model for organophilic nanofiltration. J. Membr. Sci. 286 60-68.
    • (2006) J. Membr. Sci. , vol.286 , pp. 60-68
    • Dijkstra, M.F.J.1    Bach, S.2    Ebert, K.3
  • 260
    • 46149096186 scopus 로고    scopus 로고
    • Computer program for simulation of mass transport in nanofiltration membranes
    • V. Geraldes and A.M.B. Alves (2008) Computer program for simulation of mass transport in nanofiltration membranes. J. Membr. Sci. 321 172-182.
    • (2008) J. Membr. Sci. , vol.321 , pp. 172-182
    • Geraldes, V.1    Alves, A.M.B.2
  • 261
    • 30044446224 scopus 로고    scopus 로고
    • Modeling concentration polarization in reverse osmosis processes
    • S. Kim and E.M.V. Hoek (2005) Modeling concentration polarization in reverse osmosis processes. Desalination 186 11-128.
    • (2005) Desalination , vol.186 , pp. 11-128
    • Kim, S.1    Hoek, E.M.V.2
  • 263
    • 58949094712 scopus 로고    scopus 로고
    • Characterization of nanofiltration membranes with uncharged solutes
    • Z. Kovács and W. Samhaber (2008) Characterization of nanofiltration membranes with uncharged solutes. Membrántechnika (in English) 12(2), 22-36.
    • (2008) Membrántechnika (in English) , vol.12 , Issue.2 , pp. 22-36
    • Kovács, Z.1    Samhaber, W.2
  • 264
    • 0033980820 scopus 로고    scopus 로고
    • Effect of solvent properties on permeate flow through nanofiltration membranes. Part II. Transport model
    • D.R. Machado, D. Hasson and R. Semiat (2000) Effect of solvent properties on permeate flow through nanofiltration membranes. Part II. Transport model. J. Membr. Sci. 166 63-69.
    • (2000) J. Membr. Sci. , vol.166 , pp. 63-69
    • Machado, D.R.1    Hasson, D.2    Semiat, R.3
  • 265
    • 1542304276 scopus 로고
    • Hindered sedimentation diffusion and dispersion coefficients for Brownian spheres in circular cylindrical pores
    • G.M. Mavrovouniotis and H. Brenner (1988) Hindered sedimentation diffusion and dispersion coefficients for Brownian spheres in circular cylindrical pores. J. Colloid. Interface Sci. 124 269.
    • (1988) J. Colloid. Interface Sci. , vol.124 , pp. 269
    • Mavrovouniotis, G.M.1    Brenner, H.2
  • 267
    • 67650287918 scopus 로고    scopus 로고
    • Basic equations of mass transfer through biocatalytic membrane layer
    • E. Nagy (2009) Basic equations of mass transfer through biocatalytic membrane layer. Asia-Pacific J. Chem. Eng. 4 270-278.
    • (2009) Asia-Pacific J. Chem. Eng. , vol.4 , pp. 270-278
    • Nagy, E.1
  • 268
    • 77955308038 scopus 로고    scopus 로고
    • Coupled effect of the membrane properties and concentration polarization in pervaporation: unified mass transport model
    • E. Nagy (2010) Coupled effect of the membrane properties and concentration polarization in pervaporation: unified mass transport model. Sep. Purif. Technol. 73 194-201.
    • (2010) Sep. Purif. Technol. , vol.73 , pp. 194-201
    • Nagy, E.1
  • 269
    • 80054964314 scopus 로고    scopus 로고
    • Nanofiltration of uncharged solutes: simultaneous effect of the polarization and membrane layers on separation
    • E. Nagy (2011) Nanofiltration of uncharged solutes: simultaneous effect of the polarization and membrane layers on separation. Desalin. Water Treat. 34 70-74.
    • (2011) Desalin. Water Treat. , vol.34 , pp. 70-74
    • Nagy, E.1
  • 270
    • 67650708584 scopus 로고    scopus 로고
    • Mass transport through biocatalytic membrane reactors
    • E. Nagy and E. Kulcsár (2009) Mass transport through biocatalytic membrane reactors. Desalination 245 422-436.
    • (2009) Desalination , vol.245 , pp. 422-436
    • Nagy, E.1    Kulcsár, E.2
  • 271
    • 78650512872 scopus 로고    scopus 로고
    • Membrane mass transport by nanofiltration: coupled effect of the polarization and membrane layer
    • E. Nagy, E. Kulcsár and A. Nagy (2011) Membrane mass transport by nanofiltration: coupled effect of the polarization and membrane layer. J. Membr. Sci. 368 215-222.
    • (2011) J. Membr. Sci. , vol.368 , pp. 215-222
    • Nagy, E.1    Kulcsár, E.2    Nagy, A.3
  • 272
    • 2342644891 scopus 로고    scopus 로고
    • Effect of concentration polarization and osmotic pressure on flux in organic solvent nanofiltration
    • L.G. Peeva, E. Gibbins, S. Luthra, S.W. Lloyd, R.P. Stateva and G. Livingston (2004) Effect of concentration polarization and osmotic pressure on flux in organic solvent nanofiltration. J. Membr. Sci. 236 121-136.
    • (2004) J. Membr. Sci. , vol.236 , pp. 121-136
    • Peeva, L.G.1    Gibbins, E.2    Luthra, S.3    Lloyd, S.W.4    Stateva, R.P.5    Livingston, G.6
  • 273
    • 77950075198 scopus 로고    scopus 로고
    • Transport, structural, and interfacial properties of poly (vinyl alcohol)-polysulfone composite nanofiltration membranes
    • F. Peng, X. Huang, A. Jawor and E.M.V. Hoek (2010) Transport, structural, and interfacial properties of poly (vinyl alcohol)-polysulfone composite nanofiltration membranes. J. Membr. Sci. 353 169-176.
    • (2010) J. Membr. Sci. , vol.353 , pp. 169-176
    • Peng, F.1    Huang, X.2    Jawor, A.3    Hoek, E.M.V.4
  • 274
    • 84882195659 scopus 로고    scopus 로고
    • Fundamentals of membrane solvent separation and pervaporation
    • E. Drioli, L. Giorno (Eds), Weinheim: Wiley-VCH
    • B. Van der Bruggen (2009) Fundamentals of membrane solvent separation and pervaporation. E. Drioli, L. Giorno (Eds) Membrane Operations Weinheim: Wiley-VCH 45-62.
    • (2009) Membrane Operations , pp. 45-62
    • Van der Bruggen, B.1
  • 275
    • 0344334035 scopus 로고    scopus 로고
    • Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration
    • B. Van der Bruggen, J. Schaep, D. Wilms and C. Vandecasteele (1999) Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J. Membr. Sci. 156 29-41.
    • (1999) J. Membr. Sci. , vol.156 , pp. 29-41
    • Van der Bruggen, B.1    Schaep, J.2    Wilms, D.3    Vandecasteele, C.4
  • 276
    • 52949135904 scopus 로고    scopus 로고
    • Drawbacks of applying nanofiltration and how to avoid them: a review
    • B. Van der Bruggen, M. Manttari and M. Nyström (2008) Drawbacks of applying nanofiltration and how to avoid them: a review. Sep. Purif. Technol. 63 251-263.
    • (2008) Sep. Purif. Technol. , vol.63 , pp. 251-263
    • Van der Bruggen, B.1    Manttari, M.2    Nyström, M.3
  • 277
    • 0035979971 scopus 로고    scopus 로고
    • Experimental observation of nanofiltration with organic solvents
    • X.J. Yang, A.G. Livingston and L.F. dos Santos (2001) Experimental observation of nanofiltration with organic solvents. J. Membr. Sci. 190 45-55.
    • (2001) J. Membr. Sci. , vol.190 , pp. 45-55
    • Yang, X.J.1    Livingston, A.G.2    dos Santos, L.F.3
  • 279
    • 0031585719 scopus 로고    scopus 로고
    • The effect of concentration polarization on the separation of volatile organic compounds from water by pervaporation
    • R.W. Baker, J.G. Wijmans, A.L. Athayde, R. Daniels, J.H. Ly and M. Le (1997) The effect of concentration polarization on the separation of volatile organic compounds from water by pervaporation. J. Membr. Sci. 137 159-172.
    • (1997) J. Membr. Sci. , vol.137 , pp. 159-172
    • Baker, R.W.1    Wijmans, J.G.2    Athayde, A.L.3    Daniels, R.4    Ly, J.H.5    Le, M.6
  • 280
    • 0343145617 scopus 로고    scopus 로고
    • Concentration polarization, separation factor, and Peclet number in membrane processes
    • S. Bhattacharya and S.-T. Hwang (1997) Concentration polarization, separation factor, and Peclet number in membrane processes. J. Membr. Sci. 132 73-90.
    • (1997) J. Membr. Sci. , vol.132 , pp. 73-90
    • Bhattacharya, S.1    Hwang, S.-T.2
  • 282
    • 0242665548 scopus 로고    scopus 로고
    • Driving force for pervaporation through zeolite membranes
    • T.C. Bowen, S. Li, R.D. Noble and J.L. Falconer (2003) Driving force for pervaporation through zeolite membranes. J. Membr. Sci. 225 165-176.
    • (2003) J. Membr. Sci. , vol.225 , pp. 165-176
    • Bowen, T.C.1    Li, S.2    Noble, R.D.3    Falconer, J.L.4
  • 283
    • 7244247464 scopus 로고    scopus 로고
    • Fundamental and application of pervaporation through zeolite membranes
    • T.C. Bowen, R.D. Noble and J.L. Falconer (2004) Fundamental and application of pervaporation through zeolite membranes. J. Membr. Sci. 245 1-33.
    • (2004) J. Membr. Sci. , vol.245 , pp. 1-33
    • Bowen, T.C.1    Noble, R.D.2    Falconer, J.L.3
  • 284
    • 1342263874 scopus 로고    scopus 로고
    • Original structure-property relationships derived from a new modeling of diffusion of pure solvents through polymer membranes
    • R. Clémen, A. Jonquiéres, H. Sarti, M.F. Sosata, M.A.C. Teixidor and P. Lochon (2004) Original structure-property relationships derived from a new modeling of diffusion of pure solvents through polymer membranes. J. Membr. Sci. 232 141-152.
    • (2004) J. Membr. Sci. , vol.232 , pp. 141-152
    • Clémen, R.1    Jonquiéres, A.2    Sarti, H.3    Sosata, M.F.4    Teixidor, M.A.C.5    Lochon, P.6
  • 285
    • 54849422796 scopus 로고    scopus 로고
    • Pervaporation study for different binary mixtures in the esterification system of lactic acid with ethanol
    • P. Delgado, M.T. Sanz and S. Beltrán (2008) Pervaporation study for different binary mixtures in the esterification system of lactic acid with ethanol. Sep. Purif. Technol. 64 78-87.
    • (2008) Sep. Purif. Technol. , vol.64 , pp. 78-87
    • Delgado, P.1    Sanz, M.T.2    Beltrán, S.3
  • 286
    • 0031127990 scopus 로고    scopus 로고
    • Liquid separation by membrane pervaporation: a review
    • X. Feng and R.Y.M. Huang (1997) Liquid separation by membrane pervaporation: a review. Ind. Eng. Chem. Res. 36 1048-1066.
    • (1997) Ind. Eng. Chem. Res. , vol.36 , pp. 1048-1066
    • Feng, X.1    Huang, R.Y.M.2
  • 287
    • 50249174013 scopus 로고    scopus 로고
    • Use of pervaporation to separate butanol from dilute aqueous solutions: Effect of operating conditions and concentration polarization
    • E.A. Fouad and X. Feng (2008) Use of pervaporation to separate butanol from dilute aqueous solutions: Effect of operating conditions and concentration polarization. J. Membr. Sci. 323 428-435.
    • (2008) J. Membr. Sci. , vol.323 , pp. 428-435
    • Fouad, E.A.1    Feng, X.2
  • 288
    • 0028389062 scopus 로고
    • A generalized solution-diffusion model of the pervaporation process through composite membrane
    • A. Heintz and W. Stephan (1994) A generalized solution-diffusion model of the pervaporation process through composite membrane. J. Membr. Sci. 89 153-169.
    • (1994) J. Membr. Sci. , vol.89 , pp. 153-169
    • Heintz, A.1    Stephan, W.2
  • 289
    • 0242548491 scopus 로고    scopus 로고
    • Description of binary liquid mixtures transport non-porous membrane by modified Maxwell–Stefan equation
    • P. Izák, L. Bartovská, K. Friess, M. Sipek and P. Uchytil (2003) Description of binary liquid mixtures transport non-porous membrane by modified Maxwell–Stefan equation. J. Membr. Sci. 214 293-309.
    • (2003) J. Membr. Sci. , vol.214 , pp. 293-309
    • Izák, P.1    Bartovská, L.2    Friess, K.3    Sipek, M.4    Uchytil, P.5
  • 290
    • 0037197287 scopus 로고    scopus 로고
    • Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes. II. Analysis of mass transport
    • R. Jiraratananon, A. Chanachi and R.Y.M. Huang (2002) Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes. II. Analysis of mass transport. J. Membr. Sci. 199 211-222.
    • (2002) J. Membr. Sci. , vol.199 , pp. 211-222
    • Jiraratananon, R.1    Chanachi, A.2    Huang, R.Y.M.3
  • 291
    • 0037197287 scopus 로고    scopus 로고
    • Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes: II. Analysis of mass transport
    • R. Jiraratananon, A. Chanachai and R.Y.M. Huang (2008) Pervaporation dehydration of ethanol–water mixtures with chitosan/hydroxyethylcellulose (CS/HEC) composite membranes: II. Analysis of mass transport. J. Membr. Sci. 199 211-222.
    • (2008) J. Membr. Sci. , vol.199 , pp. 211-222
    • Jiraratananon, R.1    Chanachai, A.2    Huang, R.Y.M.3
  • 292
    • 0027904888 scopus 로고
    • Pervaporation of dilute organic–water mixtures. A literature review on modeling studies and applications to aroma compound recovery
    • H.O.E. Karlesson and G. Tragardh (1993) Pervaporation of dilute organic–water mixtures. A literature review on modeling studies and applications to aroma compound recovery. J. Membr. Sci. 76 121-146.
    • (1993) J. Membr. Sci. , vol.76 , pp. 121-146
    • Karlesson, H.O.E.1    Tragardh, G.2
  • 293
    • 0342683825 scopus 로고    scopus 로고
    • Some observation about the application of Fick’s first law for membrane separation of multicomponent mixtures
    • H.D. Kamaruddin and W.J. Koros (1997) Some observation about the application of Fick’s first law for membrane separation of multicomponent mixtures. J. Membr. Sci. 135 147-159.
    • (1997) J. Membr. Sci. , vol.135 , pp. 147-159
    • Kamaruddin, H.D.1    Koros, W.J.2
  • 294
    • 85081312103 scopus 로고    scopus 로고
    • The Maxwell–Stefan approach to mass transfer
    • R. Krishna and J.A. Wesselingh (1997) The Maxwell–Stefan approach to mass transfer. Chem. Eng. Sci. 52 862-906.
    • (1997) Chem. Eng. Sci. , vol.52 , pp. 862-906
    • Krishna, R.1    Wesselingh, J.A.2
  • 295
    • 0344428139 scopus 로고    scopus 로고
    • Pervaporation-based hybrid process: review of process design, application and economics
    • F. Lipnizki, R.W. Field and P.K. Ten (1999) Pervaporation-based hybrid process: review of process design, application and economics. J. Membr. Sci. 153 183-210.
    • (1999) J. Membr. Sci. , vol.153 , pp. 183-210
    • Lipnizki, F.1    Field, R.W.2    Ten, P.K.3
  • 296
    • 0033213547 scopus 로고    scopus 로고
    • Modeling of liquid/liquid separation by pervaporation: toulene from water
    • E.E.B. Meuleman, B. Bosch, M.H.V. Mulder and H. Strathmann (1999) Modeling of liquid/liquid separation by pervaporation: toulene from water. AIChE J. 45 2153-2160.
    • (1999) AIChE J. , vol.45 , pp. 2153-2160
    • Meuleman, E.E.B.1    Bosch, B.2    Mulder, M.H.V.3    Strathmann, H.4
  • 298
    • 0028990217 scopus 로고
    • Effects of feed-side polarization on pervaporative stripping of volatile organic solutes from dilute solutions: a generalized analytical treatment
    • A.S. Michels (1995) Effects of feed-side polarization on pervaporative stripping of volatile organic solutes from dilute solutions: a generalized analytical treatment. J. Membr. Sci. 101 117-126.
    • (1995) J. Membr. Sci. , vol.101 , pp. 117-126
    • Michels, A.S.1
  • 299
    • 0005664809 scopus 로고
    • Pervaporation Separation of Ethanol–Water and Isomeric Xylenes.
    • University of Twente, The Netherlands.
    • Mulder, M. (1981) Pervaporation Separation of Ethanol–Water and Isomeric Xylenes. PhD Thesis, University of Twente, The Netherlands.
    • (1981) PhD Thesis,
    • Mulder, M.1
  • 300
    • 1842710223 scopus 로고    scopus 로고
    • Nonlinear, coupled mass transfer through a dense membrane
    • E. Nagy (2004) Nonlinear, coupled mass transfer through a dense membrane. Desalination 163 345-354.
    • (2004) Desalination , vol.163 , pp. 345-354
    • Nagy, E.1
  • 301
    • 32644467056 scopus 로고    scopus 로고
    • Binary, coupled mass transfer with variable diffusivity through cylindrical membrane
    • E. Nagy (2006) Binary, coupled mass transfer with variable diffusivity through cylindrical membrane. J. Membr. Sci. 274 159-168.
    • (2006) J. Membr. Sci. , vol.274 , pp. 159-168
    • Nagy, E.1
  • 302
    • 67650287918 scopus 로고    scopus 로고
    • Basic equations of mass transport through biocatalytic membrane layer
    • E. Nagy (2009) Basic equations of mass transport through biocatalytic membrane layer. Asia-Pacific J. Chem. Eng. 4 270-278.
    • (2009) Asia-Pacific J. Chem. Eng. , vol.4 , pp. 270-278
    • Nagy, E.1
  • 303
    • 77955308038 scopus 로고    scopus 로고
    • Coupled effect of the membrane properties and concentration polarization in pervaporation: unified mass transport model
    • E. Nagy (2010) Coupled effect of the membrane properties and concentration polarization in pervaporation: unified mass transport model. Sep. Purif. Technol. 73 194-201.
    • (2010) Sep. Purif. Technol. , vol.73 , pp. 194-201
    • Nagy, E.1
  • 304
    • 77955309509 scopus 로고    scopus 로고
    • Effect of the concentration polarization and the membrane layer mass transport on the separation
    • E. Nagy and G. Borbely (2007) Effect of the concentration polarization and the membrane layer mass transport on the separation. J. Appl. Membr. Sci. 6 1-8.
    • (2007) J. Appl. Membr. Sci. , vol.6 , pp. 1-8
    • Nagy, E.1    Borbely, G.2
  • 305
    • 67650708584 scopus 로고    scopus 로고
    • Mass transport through biocatalytic membrane reactor
    • E. Nagy and E. Kulcsar (2009) Mass transport through biocatalytic membrane reactor. Desalination 245 422-436.
    • (2009) Desalination , vol.245 , pp. 422-436
    • Nagy, E.1    Kulcsar, E.2
  • 306
    • 0342935998 scopus 로고    scopus 로고
    • Pervaporation of volatile organic compounds from water, I Influence of permeate pressure on selectivity
    • J. Olsson and G. Trägardh (2001) Pervaporation of volatile organic compounds from water, I Influence of permeate pressure on selectivity. J. Membr. Sci. 187 25-37.
    • (2001) J. Membr. Sci. , vol.187 , pp. 25-37
    • Olsson, J.1    Trägardh, G.2
  • 307
    • 0032046569 scopus 로고    scopus 로고
    • Lumen mass transfer in hollow fiber membrane processes with nonlinear boundary conditions
    • Y. Qin and J.M.S. Cabral (1988) Lumen mass transfer in hollow fiber membrane processes with nonlinear boundary conditions. AIChE J. 41 836-848.
    • (1988) AIChE J. , vol.41 , pp. 836-848
    • Qin, Y.1    Cabral, J.M.S.2
  • 308
    • 57449087072 scopus 로고    scopus 로고
    • Application of membrane separation processes in petrochemical industry: a review
    • M.T. Ravanchi, T. Kaghazchi and A. Kargari (2009) Application of membrane separation processes in petrochemical industry: a review. Desalination 235 199-244.
    • (2009) Desalination , vol.235 , pp. 199-244
    • Ravanchi, M.T.1    Kaghazchi, T.2    Kargari, A.3
  • 309
    • 0035975740 scopus 로고    scopus 로고
    • The solution-diffusion model, order of magnitude calculation of coupling between the fluxes in pervaporation
    • P. Schaetzel, C. Vauclair, G. Luo and Q.T. Nguyen (2001) The solution-diffusion model, order of magnitude calculation of coupling between the fluxes in pervaporation. J. Membr. Sci. 191 103-108.
    • (2001) J. Membr. Sci. , vol.191 , pp. 103-108
    • Schaetzel, P.1    Vauclair, C.2    Luo, G.3    Nguyen, Q.T.4
  • 310
    • 73549101279 scopus 로고    scopus 로고
    • Mass transfer in pervaporation: the key component approximation for the solution-diffusion model
    • P. Schaetzel, R. Bouallouche, H.A. Amar, T. Nguyen, B. Riffault and S. Marais (2010) Mass transfer in pervaporation: the key component approximation for the solution-diffusion model. Desalination 251 161-166.
    • (2010) Desalination , vol.251 , pp. 161-166
    • Schaetzel, P.1    Bouallouche, R.2    Amar, H.A.3    Nguyen, T.4    Riffault, B.5    Marais, S.6
  • 311
    • 34547406258 scopus 로고    scopus 로고
    • Study and optimization of the hydrodynamic upstream conditions during recovery of a complex aroma profile by pervaporation
    • T. Schafer and J. Crespo (2007) Study and optimization of the hydrodynamic upstream conditions during recovery of a complex aroma profile by pervaporation. J. Membr. Sci. 301 46-56.
    • (2007) J. Membr. Sci. , vol.301 , pp. 46-56
    • Schafer, T.1    Crespo, J.2
  • 312
    • 0031231648 scopus 로고    scopus 로고
    • Hydrophilic membranes for pervaporation: an analytical review
    • S.I. Semenova, H. Ohya and K. Soontarapa (1997) Hydrophilic membranes for pervaporation: an analytical review. Desalination 110 251-286.
    • (1997) Desalination , vol.110 , pp. 251-286
    • Semenova, S.I.1    Ohya, H.2    Soontarapa, K.3
  • 313
    • 33845422427 scopus 로고    scopus 로고
    • Polymeric membrane pervaporation
    • P. Shao and R.Y.M. Huang (2007) Polymeric membrane pervaporation. J. Membr. Sci. 287 162-179.
    • (2007) J. Membr. Sci. , vol.287 , pp. 162-179
    • Shao, P.1    Huang, R.Y.M.2
  • 314
    • 2342561872 scopus 로고    scopus 로고
    • Concentration od dilute flavor compounds by pervaporation: permeate pressure effect and boundary layer resistance modeling
    • M. She and S.-T. Hwang (2004) Concentration od dilute flavor compounds by pervaporation: permeate pressure effect and boundary layer resistance modeling. J. Membr. Sci. 236 193-202.
    • (2004) J. Membr. Sci. , vol.236 , pp. 193-202
    • She, M.1    Hwang, S.-T.2
  • 315
    • 0003474862 scopus 로고    scopus 로고
    • Pervaporative Extraction of Volatile Organic Compounds from Aqueous Systems with Use of a Tubular Transverse Flow Module.
    • University of Texas.
    • Smart, J.L. (1997) Pervaporative Extraction of Volatile Organic Compounds from Aqueous Systems with Use of a Tubular Transverse Flow Module. PhD Thesis, University of Texas.
    • (1997) PhD Thesis,
    • Smart, J.L.1
  • 316
    • 0032572024 scopus 로고    scopus 로고
    • Pervaporative extraction of volatile organic compounds from aqueous systems with use of a tubular transverse flow module. Part II. Experimental results
    • J. Smart, V.M. Starov, R.C. Schucker and D.R. Lloyd (1998) Pervaporative extraction of volatile organic compounds from aqueous systems with use of a tubular transverse flow module. Part II. Experimental results. J. Membr. Sci. 143 159-179.
    • (1998) J. Membr. Sci. , vol.143 , pp. 159-179
    • Smart, J.1    Starov, V.M.2    Schucker, R.C.3    Lloyd, D.R.4
  • 317
    • 3242796526 scopus 로고    scopus 로고
    • Separation of organic–organic mixtures by pervaporation: a review
    • B. Smitha, D. Suhanya, S. Sridhar and M. Ramakrishna (2004) Separation of organic–organic mixtures by pervaporation: a review. J. Membr. Sci. 241 1-21.
    • (2004) J. Membr. Sci. , vol.241 , pp. 1-21
    • Smitha, B.1    Suhanya, D.2    Sridhar, S.3    Ramakrishna, M.4
  • 318
    • 33646460765 scopus 로고    scopus 로고
    • Mass transport of aliphatic alcohols and esters through hydrophobic pervaporation membranes
    • O. Trifunovic and G. Trägardh (2006) Mass transport of aliphatic alcohols and esters through hydrophobic pervaporation membranes. Sep. Purif. Technol. 50 51-61.
    • (2006) Sep. Purif. Technol. , vol.50 , pp. 51-61
    • Trifunovic, O.1    Trägardh, G.2
  • 319
    • 19844375860 scopus 로고    scopus 로고
    • A review of pervaporation for product recovery from biomass fermentation processes
    • A. Vane (2005) A review of pervaporation for product recovery from biomass fermentation processes. J. Chem. Technol. Biotechnol. 80 603-629.
    • (2005) J. Chem. Technol. Biotechnol. , vol.80 , pp. 603-629
    • Vane, A.1
  • 320
    • 0033103638 scopus 로고    scopus 로고
    • Modeling permeation of binary mixtures through zeolite membranes
    • J.M. Van de Graaf, F. Kapteijn and J.A. Moulijn (1999) Modeling permeation of binary mixtures through zeolite membranes. AIChE J. 45 497.
    • (1999) AIChE J. , vol.45 , pp. 497
    • Van de Graaf, J.M.1    Kapteijn, F.2    Moulijn, J.A.3
  • 322
    • 4444282134 scopus 로고    scopus 로고
    • Determination of parameters affecting transport in polymeric membranes: parallels between pervaporation and nanofiltration
    • B. Van der Bruggen, J.C. Jansen, A. Figoli, J. Geens, D. Van Baelen, E. Drioli and C. Vandecasteele (2004) Determination of parameters affecting transport in polymeric membranes: parallels between pervaporation and nanofiltration. J. Phys. Chem. B 108 13273-13279.
    • (2004) J. Phys. Chem. B , vol.108 , pp. 13273-13279
    • Van der Bruggen, B.1    Jansen, J.C.2    Figoli, A.3    Geens, J.4    Van Baelen, D.5    Drioli, E.6    Vandecasteele, C.7
  • 323
    • 0000916565 scopus 로고    scopus 로고
    • A review on the separation of benzene/cyclohexane mixtures by pervaporation process
    • J.P.G. Villaluenga and A. Tabe-Mohammadi (2000) A review on the separation of benzene/cyclohexane mixtures by pervaporation process. J. Membr. Sci. 169 159-174.
    • (2000) J. Membr. Sci. , vol.169 , pp. 159-174
    • Villaluenga, J.P.G.1    Tabe-Mohammadi, A.2
  • 324
    • 53949119136 scopus 로고    scopus 로고
    • Membrane separation process. Pervaporation through zeolite membrane
    • S.-L. Wee Sh.-L., C.-T. Tye Ch.-Th. and S. Bhatia (2008) Membrane separation process. Pervaporation through zeolite membrane. Sep. Sci. Technol. 63 500-516.
    • (2008) Sep. Sci. Technol. , vol.63 , pp. 500-516
    • Wee, S.-L.1    Tye, C.-T.2    Bhatia, S.3
  • 326
    • 2442697876 scopus 로고    scopus 로고
    • The role of permeant molar volume in the solution-diffusion model transport equations
    • J.G. Wijmans (2004) The role of permeant molar volume in the solution-diffusion model transport equations. J. Membr. Sci. 237 39-50.
    • (2004) J. Membr. Sci. , vol.237 , pp. 39-50
    • Wijmans, J.G.1
  • 327
    • 0028972331 scopus 로고
    • The solution-diffusion model: a review
    • J.G. Wijmans and R.W. Baker (1995) The solution-diffusion model: a review. J. Membr. Sci. 107 1-21.
    • (1995) J. Membr. Sci. , vol.107 , pp. 1-21
    • Wijmans, J.G.1    Baker, R.W.2
  • 328
    • 0029657201 scopus 로고    scopus 로고
    • The role of boundary layers in the removal of volatile organic compounds from water by pervaporation
    • G. Wijmans, A.L. Athayde, R. Daniels, J.H. Ly, H.D. Kamanaddin and I. Pinnau (1996) The role of boundary layers in the removal of volatile organic compounds from water by pervaporation. J. Membr. Sci. 109(1996), 135.
    • (1996) J. Membr. Sci. , vol.109 , Issue.1996 , pp. 135
    • Wijmans, G.1    Athayde, A.L.2    Daniels, R.3    Ly, J.H.4    Kamanaddin, H.D.5    Pinnau, I.6
  • 329
    • 0032798560 scopus 로고    scopus 로고
    • Heat and mass transport in vacuum membrane distillation
    • S. Bandini and G.C. Sarti (1999) Heat and mass transport in vacuum membrane distillation. AIChE J. 45 1422-1433.
    • (1999) AIChE J. , vol.45 , pp. 1422-1433
    • Bandini, S.1    Sarti, G.C.2
  • 330
    • 0037056934 scopus 로고    scopus 로고
    • Concentration of must through vacuum membrane distillation
    • S. Bandini and G.C. Sarti (2002) Concentration of must through vacuum membrane distillation. J. Membr. Sci. 149 253-259.
    • (2002) J. Membr. Sci. , vol.149 , pp. 253-259
    • Bandini, S.1    Sarti, G.C.2
  • 331
    • 0017555701 scopus 로고
    • Mass transfer in turbulent flow measured by the electrochemical method
    • F.P. Berger and K.F. Hau (1977) Mass transfer in turbulent flow measured by the electrochemical method. Int. J. Heat Mass Transfer 20 1185-1194.
    • (1977) Int. J. Heat Mass Transfer , vol.20 , pp. 1185-1194
    • Berger, F.P.1    Hau, K.F.2
  • 332
    • 0028991444 scopus 로고
    • Aqueous–aqueous extraction of organic pollutants through tubular silicone rubber membranes
    • P.R. Brookes and A.G. Livingston (1995) Aqueous–aqueous extraction of organic pollutants through tubular silicone rubber membranes. J. Membr. Sci. 104 119-137.
    • (1995) J. Membr. Sci. , vol.104 , pp. 119-137
    • Brookes, P.R.1    Livingston, A.G.2
  • 333
    • 0028460859 scopus 로고
    • Theoretical and experimental study on membrane distillation in the concentration of orange juice
    • V. Calabro, B.L. Jiao and E. Drioli (1994) Theoretical and experimental study on membrane distillation in the concentration of orange juice. Ind. Eng. Chem. Res. 33 1803-1808.
    • (1994) Ind. Eng. Chem. Res. , vol.33 , pp. 1803-1808
    • Calabro, V.1    Jiao, B.L.2    Drioli, E.3
  • 334
    • 0027905910 scopus 로고
    • The effect of shell side hydrodynamics on the performance of axial flow hollow fiber modules
    • M.J. Costello, A.G. Fane, P.A. Hogan and R.W. Schofield (1993) The effect of shell side hydrodynamics on the performance of axial flow hollow fiber modules. J. Membr. Sci. 80 1-11.
    • (1993) J. Membr. Sci. , vol.80 , pp. 1-11
    • Costello, M.J.1    Fane, A.G.2    Hogan, P.A.3    Schofield, R.W.4
  • 335
    • 84882227334 scopus 로고    scopus 로고
    • Membrane contactors
    • E. Drioli, L. Giorno (Eds), Weinheim: Wiley-VCH
    • A. Criscuoli (2009) Membrane contactors. E. Drioli, L. Giorno (Eds) Membrane Operations Weinheim: Wiley-VCH 449-460.
    • (2009) Membrane Operations , pp. 449-460
    • Criscuoli, A.1
  • 336
    • 0023825460 scopus 로고    scopus 로고
    • Protein extraction with hollow fibers
    • L. Dahuron and E.L. Cussler (1998) Protein extraction with hollow fibers. AIChE J. 34 130-136.
    • (1998) AIChE J. , vol.34 , pp. 130-136
    • Dahuron, L.1    Cussler, E.L.2
  • 339
    • 78049245021 scopus 로고    scopus 로고
    • 2 removal from natural gas at high pressure using membrane contactors: model validation and membrane parametric studies
    • R. Faiz and M. Al-Marzouqi (2010) CO 2 removal from natural gas at high pressure using membrane contactors: model validation and membrane parametric studies. J. Membr. Sci. 365 232-241.
    • (2010) J. Membr. Sci. , vol.365 , pp. 232-241
    • Faiz, R.1    Al-Marzouqi, M.2
  • 340
    • 78650523171 scopus 로고    scopus 로고
    • 2S using membrane contactors
    • R. Faiz and M. Al-Marzouqi (2011) Insights on natural gas purification: simultaneous absorption of CO 2 and H 2S using membrane contactors. Sep. Purif. Technol. 76 351-361.
    • (2011) Sep. Purif. Technol. , vol.76 , pp. 351-361
    • Faiz, R.1    Al-Marzouqi, M.2
  • 341
    • 84882135479 scopus 로고    scopus 로고
    • Membrane contactors in industrial applications
    • E. Drioli, L. Giorno (Eds), Weinheim: Wiley-VCH
    • S. Gaeta (2009) Membrane contactors in industrial applications. E. Drioli, L. Giorno (Eds) Membrane Operations Weinheim: Wiley-VCH 499-512.
    • (2009) Membrane Operations , pp. 499-512
    • Gaeta, S.1
  • 342
    • 17544401607 scopus 로고    scopus 로고
    • Kinetics of solvent extraction in hollow-fiber contactors
    • R. Gawronski and B. Wrzesinska (2000) Kinetics of solvent extraction in hollow-fiber contactors. J. Membr. Sci. 168 213-222.
    • (2000) J. Membr. Sci. , vol.168 , pp. 213-222
    • Gawronski, R.1    Wrzesinska, B.2
  • 344
    • 0023292203 scopus 로고
    • Mass transfer in the membrane concentration polarization layer under turbulent cross flow. I. Critical literature review and adaptation of existing Sherwood correlations to membrane operation
    • V. Gekas and B. Hallström (1987) Mass transfer in the membrane concentration polarization layer under turbulent cross flow. I. Critical literature review and adaptation of existing Sherwood correlations to membrane operation. J. Membr. Sci. 30 153-157.
    • (1987) J. Membr. Sci. , vol.30 , pp. 153-157
    • Gekas, V.1    Hallström, B.2
  • 345
    • 0037443314 scopus 로고    scopus 로고
    • Factors affecting flux and ethanol separation performance in vacuum membrane distillation
    • M.A. Izquierdo-Gil and G. Jonsson (2003) Factors affecting flux and ethanol separation performance in vacuum membrane distillation. J. Membr. Sci. 214 113-130.
    • (2003) J. Membr. Sci. , vol.214 , pp. 113-130
    • Izquierdo-Gil, M.A.1    Jonsson, G.2
  • 346
    • 1442335031 scopus 로고    scopus 로고
    • Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation
    • R.B. Jorgensen, A.S. Meyer, C. Varming and G. Johsson (2004) Recovery of volatile aroma compounds from black currant juice by vacuum membrane distillation. J. Food Eng. 64 23-31.
    • (2004) J. Food Eng. , vol.64 , pp. 23-31
    • Jorgensen, R.B.1    Meyer, A.S.2    Varming, C.3    Johsson, G.4
  • 347
    • 0031553530 scopus 로고    scopus 로고
    • Review: membrane distillation
    • K.W. Lawson and D.R. Lloyd (1997) Review: membrane distillation. J. Membr. Sci. 124 1-25.
    • (1997) J. Membr. Sci. , vol.124 , pp. 1-25
    • Lawson, K.W.1    Lloyd, D.R.2
  • 348
    • 10044247417 scopus 로고    scopus 로고
    • 2 absorption using chemical solvents in hollow fiber membrane contactors
    • J.L. Li and B.H. Cheng (2005) Review of CO 2 absorption using chemical solvents in hollow fiber membrane contactors. Sep. Purif. Technol. 41 109-122.
    • (2005) Sep. Purif. Technol. , vol.41 , pp. 109-122
    • Li, J.L.1    Cheng, B.H.2
  • 349
    • 60549083651 scopus 로고    scopus 로고
    • Zero solvent emission process for sulfur dioxide recovery using a membrane contactor and ionic liquids
    • P. Luis, A. Garea and A. Irabien (2009) Zero solvent emission process for sulfur dioxide recovery using a membrane contactor and ionic liquids. J. Membr. Sci. 330 80-89.
    • (2009) J. Membr. Sci. , vol.330 , pp. 80-89
    • Luis, P.1    Garea, A.2    Irabien, A.3
  • 350
    • 0031105746 scopus 로고    scopus 로고
    • Modeling of microporous hollow fiber membrane modules operated under partially wetted conditions
    • A. Malek, K. Li and W.K. Teo (1997) Modeling of microporous hollow fiber membrane modules operated under partially wetted conditions. Ind. Eng. Chem. Res. 36 784-793.
    • (1997) Ind. Eng. Chem. Res. , vol.36 , pp. 784-793
    • Malek, A.1    Li, K.2    Teo, W.K.3
  • 351
    • 17644446719 scopus 로고    scopus 로고
    • A method to evaluate coefficients affecting flux in membrane distillation
    • L. Martínez-Diez and M.I. Vázquez-González (2000) A method to evaluate coefficients affecting flux in membrane distillation. J. Membr. Sci. 173 225-234.
    • (2000) J. Membr. Sci. , vol.173 , pp. 225-234
    • Martínez-Diez, L.1    Vázquez-González, M.I.2
  • 353
    • 31744443829 scopus 로고    scopus 로고
    • A study of mass transfer resistance in membrane gas–liquid contacting processes
    • M. Mavroudi, S.P. Kaldis and G.P. Sakellaropoulos (2006) A study of mass transfer resistance in membrane gas–liquid contacting processes. J. Membr. Sci. 272 103-115.
    • (2006) J. Membr. Sci. , vol.272 , pp. 103-115
    • Mavroudi, M.1    Kaldis, S.P.2    Sakellaropoulos, G.P.3
  • 355
    • 0024732247 scopus 로고
    • Model of the effect of chemical reaction on bulk-phase concentrations
    • E. Nagy and A. Ujhidy (1989) Model of the effect of chemical reaction on bulk-phase concentrations. AIChE J. 35 1564-1568.
    • (1989) AIChE J. , vol.35 , pp. 1564-1568
    • Nagy, E.1    Ujhidy, A.2
  • 356
    • 0020772349 scopus 로고
    • Untersuchung der Stoffübertragung mit einer chemischen Reaktion erster Ordnung von endlicher Geswindigkeit nach einem einheitlichen Modell, I. Definition und Untersuchung der auf dem Haupstrom der Phasen bezogenen Stoffströme bei irreversiblen und reversiblen Reaktionen mit Hilfe der Zweifilmtheorie
    • E. Nagy, T. Blickle and A. Ujhidy (1983) Untersuchung der Stoffübertragung mit einer chemischen Reaktion erster Ordnung von endlicher Geswindigkeit nach einem einheitlichen Modell, I. Definition und Untersuchung der auf dem Haupstrom der Phasen bezogenen Stoffströme bei irreversiblen und reversiblen Reaktionen mit Hilfe der Zweifilmtheorie. Chem. Techn. 35 307-310.
    • (1983) Chem. Techn. , vol.35 , pp. 307-310
    • Nagy, E.1    Blickle, T.2    Ujhidy, A.3
  • 357
    • 36749013593 scopus 로고    scopus 로고
    • Heat and mass transfer analysis in dierect contact membrane distillation
    • M. Otaishat, T. Matsuura, B. Kruczek and M. Khayet (2008) Heat and mass transfer analysis in dierect contact membrane distillation. Desalination 219 272-292.
    • (2008) Desalination , vol.219 , pp. 272-292
    • Otaishat, M.1    Matsuura, T.2    Kruczek, B.3    Khayet, M.4
  • 358
    • 0023960438 scopus 로고
    • Dispersion-free solvent extraction with microporous hollow-fiber modules
    • R. Prasad and K.K. Sirkar (1988) Dispersion-free solvent extraction with microporous hollow-fiber modules. AIChE J. 34 177-188.
    • (1988) AIChE J. , vol.34 , pp. 177-188
    • Prasad, R.1    Sirkar, K.K.2
  • 359
    • 0029657124 scopus 로고    scopus 로고
    • Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors
    • H.A. Randwala (1996) Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J. Membr. Sci. 112 229-240.
    • (1996) J. Membr. Sci. , vol.112 , pp. 229-240
    • Randwala, H.A.1
  • 360
    • 0033675292 scopus 로고    scopus 로고
    • Technical aspects of separation and simultaneous enzymatic reaction in multiphase enzyme membrane reactors
    • C. Sisak, E. Nagy, J. Burfeind and K. Schügerl (2000) Technical aspects of separation and simultaneous enzymatic reaction in multiphase enzyme membrane reactors. Bioprocess Eng. 23 503-512.
    • (2000) Bioprocess Eng. , vol.23 , pp. 503-512
    • Sisak, C.1    Nagy, E.2    Burfeind, J.3    Schügerl, K.4
  • 363
    • 58949093610 scopus 로고    scopus 로고
    • A general model for membrane-based separation process
    • V. Soni, J. Abildskov, G. Jonsson and R. Gani (2009) A general model for membrane-based separation process. Comput. Chem. Eng. 33 644-659.
    • (2009) Comput. Chem. Eng. , vol.33 , pp. 644-659
    • Soni, V.1    Abildskov, J.2    Jonsson, G.3    Gani, R.4
  • 366
    • 1942434559 scopus 로고    scopus 로고
    • 2 capture by three typical amine solutions in hollow fiber membrane contactors
    • R. Wang, D. Li and D. Liang (2004) Modeling of CO 2 capture by three typical amine solutions in hollow fiber membrane contactors. Chem. Eng. Process 43 849-856.
    • (2004) Chem. Eng. Process , vol.43 , pp. 849-856
    • Wang, R.1    Li, D.2    Liang, D.3
  • 368
    • 0034237581 scopus 로고    scopus 로고
    • Shell-side mass transfer performance of randomly packed hollow fiber modules
    • J. Wu and V. Chen (2000) Shell-side mass transfer performance of randomly packed hollow fiber modules. J. Membr. Sci. 172 59-74.
    • (2000) J. Membr. Sci. , vol.172 , pp. 59-74
    • Wu, J.1    Chen, V.2
  • 369
    • 0037259572 scopus 로고    scopus 로고
    • Shell side mass transfer characteristics in a parallel flow hollow fiber membrane module
    • J.M. Zeng, Y.Y. Xu and Z.-K. Xu (2003) Shell side mass transfer characteristics in a parallel flow hollow fiber membrane module. Sep. Sci. Technol. 38 1247-1267.
    • (2003) Sep. Sci. Technol. , vol.38 , pp. 1247-1267
    • Zeng, J.M.1    Xu, Y.Y.2    Xu, Z.-K.3
  • 370
    • 33744525428 scopus 로고    scopus 로고
    • 2 absorption in a hollow fiber membrane contactor
    • H.-Y. Zhang, R. Wang, D.T. Liang and J.H. Tay (2006) Modeling and experimental study of CO 2 absorption in a hollow fiber membrane contactor. J. Membr. Sci. 279 301-310.
    • (2006) J. Membr. Sci. , vol.279 , pp. 301-310
    • Zhang, H.-Y.1    Wang, R.2    Liang, D.T.3    Tay, J.H.4
  • 371
    • 37249010045 scopus 로고    scopus 로고
    • 2 absorption
    • H.-Y. Zhang, R. Wang, D.T. Liang and J.H. Tay (2008) Theoretical and experimental studies of membrane wetting in the membrane gas–liquid contacting process for CO 2 absorption. J. Membr. Sci. 308 162-170.
    • (2008) J. Membr. Sci. , vol.308 , pp. 162-170
    • Zhang, H.-Y.1    Wang, R.2    Liang, D.T.3    Tay, J.H.4
  • 372
    • 56349091485 scopus 로고    scopus 로고
    • Mass transport with varying diffusion- and solubility coefficient through a catalytic membrane layer
    • E. Nagy (2008) Mass transport with varying diffusion- and solubility coefficient through a catalytic membrane layer. Chem. Eng. Res. Design 86 723-730.
    • (2008) Chem. Eng. Res. Design , vol.86 , pp. 723-730
    • Nagy, E.1
  • 373
    • 78650513700 scopus 로고    scopus 로고
    • Mathematical Modeling of Biochemical Membrane Reactors
    • E. Drioli, L. Giorno (Eds), Weinheim: Wiley-VCH
    • E. Nagy (2009) Mathematical Modeling of Biochemical Membrane Reactors. E. Drioli, L. Giorno (Eds) Membrane Operations, Innovative Separations and Transformations Weinheim: Wiley-VCH 309-334.
    • (2009) Membrane Operations, Innovative Separations and Transformations , pp. 309-334
    • Nagy, E.1
  • 374
    • 67650287918 scopus 로고    scopus 로고
    • Basic equations of mass transfer through biocatalytic membrane layer
    • E. Nagy (2009) Basic equations of mass transfer through biocatalytic membrane layer. Asia-Pacific J. Chem. Eng. 4 270-278.
    • (2009) Asia-Pacific J. Chem. Eng. , vol.4 , pp. 270-278
    • Nagy, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.