메뉴 건너뛰기




Volumn 2010-July, Issue , 2010, Pages 384-394

Word representations: A simple and general method for semi-supervised learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTATIONAL LINGUISTICS; EMBEDDINGS; NATURAL LANGUAGE PROCESSING SYSTEMS;

EID: 85118455913     PISSN: 0736587X     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (279)

References (52)
  • 1
    • 84859921107 scopus 로고    scopus 로고
    • A high-performance semi-supervised learning method for text chunking
    • Ando, R., & Zhang, T. (2005). A high-performance semi-supervised learning method for text chunking. ACL.
    • (2005) ACL
    • Ando, R.1    Zhang, T.2
  • 2
    • 79959407847 scopus 로고    scopus 로고
    • Neural net language models
    • Bengio, Y. (2008). Neural net language models. Scholarpedia, 3, 3881.
    • (2008) Scholarpedia , vol.3 , pp. 3881
    • Bengio, Y.1
  • 3
    • 84899005563 scopus 로고    scopus 로고
    • A neural probabilistic language model
    • Bengio, Y., Ducharme, R., & Vincent, P. (2001). A neural probabilistic language model. NIPS.
    • (2001) NIPS
    • Bengio, Y.1    Ducharme, R.2    Vincent, P.3
  • 6
    • 10944221006 scopus 로고    scopus 로고
    • Quick training of probabilistic neural nets by importance sampling
    • Bengio, Y., & Sénécal, J.-S. (2003). Quick training of probabilistic neural nets by importance sampling. AISTATS.
    • (2003) AISTATS
    • Bengio, Y.1    Sénécal, J.-S.2
  • 9
    • 84866875199 scopus 로고    scopus 로고
    • Improving generative statistical parsing with semi-supervised word clustering
    • Candito, M., & Crabbé, B. (2009). Improving generative statistical parsing with semi-supervised word clustering. IWPT (pp. 138-141).
    • (2009) IWPT , pp. 138-141
    • Candito, M.1    Crabbé, B.2
  • 10
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • Collobert, R., & Weston, J. (2008). A unified architecture for natural language processing: Deep neural networks with multitask learning. ICML.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 11
    • 80053402648 scopus 로고    scopus 로고
    • Semi-supervised semantic role labeling using the Latent Words Language Model
    • Deschacht, K., & Moens, M.-F. (2009). Semi-supervised semantic role labeling using the Latent Words Language Model. EMNLP (pp. 21-29).
    • (2009) EMNLP , pp. 21-29
    • Deschacht, K.1    Moens, M.-F.2
  • 13
    • 0027636611 scopus 로고
    • Learning and development in neural networks: The importance of starting small
    • Elman, J. L. (1993). Learning and development in neural networks: The importance of starting small. Cognition, 48, 781-799.
    • (1993) Cognition , vol.48 , pp. 781-799
    • Elman, J. L.1
  • 14
    • 84874625722 scopus 로고    scopus 로고
    • Enhancing unlexicalized parsing performance using a wide coverage lexicon, fuzzy tag-set mapping, and EM-HMM-based lexical probabilities
    • Goldberg, Y., Tsarfaty, R., Adler, M., & Elhadad, M. (2009). Enhancing unlexicalized parsing performance using a wide coverage lexicon, fuzzy tag-set mapping, and EM-HMM-based lexical probabilities. EACL.
    • (2009) EACL
    • Goldberg, Y.1    Tsarfaty, R.2    Adler, M.3    Elhadad, M.4
  • 16
    • 0002646713 scopus 로고
    • Contextual relations of words in grimm tales, analyzed by self-organizing map
    • ICANN
    • Honkela, T., Pulkki, V., & Kohonen, T. (1995). Contextual relations of words in grimm tales, analyzed by self-organizing map. ICANN.
    • (1995)
    • Honkela, T.1    Pulkki, V.2    Kohonen, T.3
  • 17
    • 80053028502 scopus 로고    scopus 로고
    • Distributional representations for handling sparsity in supervised sequence labeling
    • Huang, F., & Yates, A. (2009). Distributional representations for handling sparsity in supervised sequence labeling. ACL.
    • (2009) ACL
    • Huang, F.1    Yates, A.2
  • 18
    • 0031625017 scopus 로고    scopus 로고
    • Dimensionality reduction by random mapping: Fast similarity computation for clustering
    • Kaski, S. (1998). Dimensionality reduction by random mapping: Fast similarity computation for clustering. IJCNN (pp. 413-418).
    • (1998) IJCNN , pp. 413-418
    • Kaski, S.1
  • 19
    • 80053551637 scopus 로고    scopus 로고
    • Simple semi-supervised dependency parsing
    • Koo, T., Carreras, X., & Collins, M. (2008). Simple semi-supervised dependency parsing. ACL (pp. 595-603).
    • (2008) ACL , pp. 595-603
    • Koo, T.1    Carreras, X.2    Collins, M.3
  • 20
    • 80053344402 scopus 로고    scopus 로고
    • An effective two-stage model for exploiting non-local dependencies in named entity recognition
    • Krishnan, V., & Manning, C. D. (2006). An effective two-stage model for exploiting non-local dependencies in named entity recognition. COLING-ACL.
    • (2006) COLING-ACL
    • Krishnan, V.1    Manning, C. D.2
  • 22
    • 34547991287 scopus 로고    scopus 로고
    • Semi-supervised sequence modeling with syntactic topic models
    • Li, W., & McCallum, A. (2005). Semi-supervised sequence modeling with syntactic topic models. AAAI.
    • (2005) AAAI
    • Li, W.1    McCallum, A.2
  • 24
    • 85185398851 scopus 로고    scopus 로고
    • Phrase clustering for discriminative learning
    • Lin, D., & Wu, X. (2009). Phrase clustering for discriminative learning. ACL-IJCNLP (pp. 1030-1038).
    • (2009) ACL-IJCNLP , pp. 1030-1038
    • Lin, D.1    Wu, X.2
  • 27
    • 0032049073 scopus 로고    scopus 로고
    • Algorithms for bigram and trigram word clustering
    • Martin, S., Liermann, J., & Ney, H. (1998). Algorithms for bigram and trigram word clustering. Speech Communication, 24, 19-37.
    • (1998) Speech Communication , vol.24 , pp. 19-37
    • Martin, S.1    Liermann, J.2    Ney, H.3
  • 28
    • 85117730830 scopus 로고    scopus 로고
    • Name tagging with word clusters and discriminative training
    • Miller, S., Guinness, J., & Zamanian, A. (2004). Name tagging with word clusters and discriminative training. HLT-NAACL (pp. 337-342).
    • (2004) HLT-NAACL , pp. 337-342
    • Miller, S.1    Guinness, J.2    Zamanian, A.3
  • 29
    • 67650453038 scopus 로고    scopus 로고
    • Three new graphical models for statistical language modelling
    • Mnih, A., & Hinton, G. E. (2007). Three new graphical models for statistical language modelling. ICML.
    • (2007) ICML
    • Mnih, A.1    Hinton, G. E.2
  • 30
    • 84858779990 scopus 로고    scopus 로고
    • A scalable hierarchical distributed language model
    • Mnih, A., & Hinton, G. E. (2009). A scalable hierarchical distributed language model. NIPS (pp. 1081-1088).
    • (2009) NIPS , pp. 1081-1088
    • Mnih, A.1    Hinton, G. E.2
  • 31
    • 34547997987 scopus 로고    scopus 로고
    • Hierarchical probabilistic neural network language model
    • Morin, F., & Bengio, Y. (2005). Hierarchical probabilistic neural network language model. AISTATS.
    • (2005) AISTATS
    • Morin, F.1    Bengio, Y.2
  • 32
    • 85123966307 scopus 로고
    • Distributional clustering of english words
    • Pereira, F., Tishby, N., & Lee, L. (1993). Distributional clustering of english words. ACL (pp. 183-190).
    • (1993) ACL , pp. 183-190
    • Pereira, F.1    Tishby, N.2    Lee, L.3
  • 33
    • 84862300668 scopus 로고    scopus 로고
    • Design challenges and misconceptions in named entity recognition
    • Ratinov, L., & Roth, D. (2009). Design challenges and misconceptions in named entity recognition. CoNLL.
    • (2009) CoNLL
    • Ratinov, L.1    Roth, D.2
  • 38
    • 0346346018 scopus 로고    scopus 로고
    • Introduction to the CoNLL-2000 shared task: Chunking
    • CoNLL
    • Sang, E. T., & Buchholz, S. (2000). Introduction to the CoNLL-2000 shared task: Chunking. CoNLL.
    • (2000)
    • Sang, E. T.1    Buchholz, S.2
  • 40
    • 85043116988 scopus 로고    scopus 로고
    • Shallow parsing with conditional random fields
    • Sha, F., & Pereira, F. C. N. (2003). Shallow parsing with conditional random fields. HLT-NAACL.
    • (2003) HLT-NAACL
    • Sha, F.1    Pereira, F. C. N.2
  • 41
    • 84858423134 scopus 로고    scopus 로고
    • From baby steps to leapfrog: How “less is more” in unsupervised dependency parsing
    • Spitkovsky, V., Alshawi, H., & Jurafsky, D. (2010). From baby steps to leapfrog: How “less is more” in unsupervised dependency parsing. NAACL-HLT.
    • (2010) NAACL-HLT
    • Spitkovsky, V.1    Alshawi, H.2    Jurafsky, D.3
  • 42
    • 84859884966 scopus 로고    scopus 로고
    • Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data
    • Suzuki, J., & Isozaki, H. (2008). Semi-supervised sequential labeling and segmentation using giga-word scale unlabeled data. ACL-08: HLT (pp. 665-673).
    • (2008) ACL-08: HLT , pp. 665-673
    • Suzuki, J.1    Isozaki, H.2
  • 43
    • 80053399428 scopus 로고    scopus 로고
    • An empirical study of semi-supervised structured conditional models for dependency parsing
    • Suzuki, J., Isozaki, H., Carreras, X., & Collins, M. (2009). An empirical study of semi-supervised structured conditional models for dependency parsing. EMNLP.
    • (2009) EMNLP
    • Suzuki, J.1    Isozaki, H.2    Carreras, X.3    Collins, M.4
  • 46
    • 2242436639 scopus 로고    scopus 로고
    • Hierarchical clustering of words
    • Ushioda, A. (1996). Hierarchical clustering of words. COLING (pp. 1159-1162).
    • (1996) COLING , pp. 1159-1162
    • Ushioda, A.1
  • 50
    • 78649933846 scopus 로고    scopus 로고
    • Software framework for topic modelling with large corpora
    • Řehůřek, R., & Sojka, P. (2010). Software framework for topic modelling with large corpora. LREC.
    • (2010) LREC
    • Řehůřek, R.1    Sojka, P.2
  • 51
    • 84919495233 scopus 로고    scopus 로고
    • A robust risk minimization based named entity recognition system
    • Zhang, T., & Johnson, D. (2003). A robust risk minimization based named entity recognition system. CoNLL.
    • (2003) CoNLL
    • Zhang, T.1    Johnson, D.2
  • 52
    • 84859984064 scopus 로고    scopus 로고
    • Multilingual dependency learning: a huge feature engineering method to semantic dependency parsing
    • Zhao, H., Chen, W., Kit, C., & Zhou, G. (2009). Multilingual dependency learning: a huge feature engineering method to semantic dependency parsing. CoNLL (pp. 55-60).
    • (2009) CoNLL , pp. 55-60
    • Zhao, H.1    Chen, W.2    Kit, C.3    Zhou, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.