메뉴 건너뛰기




Volumn 140, Issue , 2020, Pages 95-100

A light CNN for detecting COVID-19 from CT scans of the chest

Author keywords

CNN; COVID 19; Deep Learning; Pattern Recognition

Indexed keywords

CONVOLUTIONAL NEURAL NETWORKS; DIAGNOSIS; DISEASE CONTROL; GRAPHICS PROCESSING UNIT; MHEALTH;

EID: 85092238021     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2020.10.001     Document Type: Article
Times cited : (774)

References (18)
  • 1
    • 85055722838 scopus 로고    scopus 로고
    • Benchmark analysis of representative deep neural network architectures
    • Bianco, S., Cadene, R., Celona, L., Napoletano, P., Benchmark analysis of representative deep neural network architectures. IEEE Access 6 (2018), 64270–64277.
    • (2018) IEEE Access , vol.6 , pp. 64270-64277
    • Bianco, S.1    Cadene, R.2    Celona, L.3    Napoletano, P.4
  • 3
    • 85092217905 scopus 로고    scopus 로고
    • Fast and accurate deep network learning by exponential linear units (ELUs), arXiv preprint arXiv:.
    • D.-A. Clevert, T. Unterthiner, S. Hochreiter, Fast and accurate deep network learning by exponential linear units (ELUs), arXiv preprint arXiv: 1511.07289 (2015).
    • (2015)
    • Clevert, D.-A.1    Unterthiner, T.2    Hochreiter, S.3
  • 5
    • 85081271465 scopus 로고    scopus 로고
    • Sensitivity of chest CT for COVID-19: comparison to RT-PCR
    • Fang, Y., Zhang, H., Xie, J., Lin, M., Ying, L., Pang, P., Ji, W., Sensitivity of chest CT for COVID-19: comparison to RT-PCR. Radiology, 2020, 200432.
    • (2020) Radiology , pp. 200432
    • Fang, Y.1    Zhang, H.2    Xie, J.3    Lin, M.4    Ying, L.5    Pang, P.6    Ji, W.7
  • 6
    • 85084159210 scopus 로고    scopus 로고
    • Early CT features and temporal lung changes in COVID-19 pneumonia in Wuhan, China
    • Hu, Q., Guan, H., Sun, Z., Huang, L., Chen, C., Ai, T., Pan, Y., Xia, L., Early CT features and temporal lung changes in COVID-19 pneumonia in Wuhan, China. Eur. J. Radiol., 2020, 109017.
    • (2020) Eur. J. Radiol. , pp. 109017
    • Hu, Q.1    Guan, H.2    Sun, Z.3    Huang, L.4    Chen, C.5    Ai, T.6    Pan, Y.7    Xia, L.8
  • 7
    • 85092252732 scopus 로고    scopus 로고
    • SqueezeNet: alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model size, arXiv preprint arXiv:.
    • F.N. Iandola, S. Han, M.W. Moskewicz, K. Ashraf, W.J. Dally, K. Keutzer, SqueezeNet: alexnet-level accuracy with 50x fewer parameters and < 0.5 mb model size, arXiv preprint arXiv: 1602.07360 (2016).
    • (2016)
    • Iandola, F.N.1    Han, S.2    Moskewicz, M.W.3    Ashraf, K.4    Dally, W.J.5    Keutzer, K.6
  • 8
    • 85092245193 scopus 로고    scopus 로고
    • S. italiana di Radiologia Medica e Interventistica, Sirm dataset of COVID-19 chest CT scan, (). Accessed: 2020-04-05.
    • S. italiana di Radiologia Medica e Interventistica, Sirm dataset of COVID-19 chest CT scan, ( https://www.sirm.org/category/senza-categoria/covid-19/). Accessed: 2020-04-05.
  • 10
    • 85088495241 scopus 로고    scopus 로고
    • Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT
    • Li, L., Qin, L., Xu, Z., Yin, Y., Wang, X., Kong, B., Bai, J., Lu, Y., Fang, Z., Song, Q., et al. Artificial intelligence distinguishes COVID-19 from community acquired pneumonia on chest CT. Radiology, 2020, 200905.
    • (2020) Radiology , pp. 200905
    • Li, L.1    Qin, L.2    Xu, Z.3    Yin, Y.4    Wang, X.5    Kong, B.6    Bai, J.7    Lu, Y.8    Fang, Z.9    Song, Q.10
  • 11
    • 85081908747 scopus 로고    scopus 로고
    • Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management
    • Li, Y., Xia, L., Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management. Am. J. Roentgenol. 214:6 (2020), 1280–1286.
    • (2020) Am. J. Roentgenol. , vol.214 , Issue.6 , pp. 1280-1286
    • Li, Y.1    Xia, L.2
  • 12
    • 85092226933 scopus 로고    scopus 로고
    • World health organization web site, (). Accessed: 2020-07-01.
    • W.H. Organization, World health organization web site, ( https://covid19.who.int/?gclid=CjwKCAjw88v3BRBFEiwApwLevSOpc4Ho-5vvQC8vAxoT_VU5VI1x9B9Tzu7LjxJSTF0itWGkawCdnhoCI_MQAvD_BwE). Accessed: 2020-07-01.
    • Organization, W.H.1
  • 13
    • 85092252166 scopus 로고    scopus 로고
    • Improving the speed of neural networks on CPUs.
    • V. Vanhoucke, A. Senior, M.Z. Mao, Improving the speed of neural networks on CPUs (2011).
    • (2011)
    • Vanhoucke, V.1    Senior, A.2    Mao, M.Z.3
  • 14
  • 15
    • 85092240553 scopus 로고    scopus 로고
    • Deep learning system to screen coronavirus disease 2019 pneumonia, arXiv preprint arXiv:.
    • X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, L. Yu, Y. Chen, J. Su, G. Lang, et al., Deep learning system to screen coronavirus disease 2019 pneumonia, arXiv preprint arXiv: 2002.09334 (2020).
    • (2020)
    • Xu, X.1    Jiang, X.2    Ma, C.3    Du, P.4    Li, X.5    Lv, S.6    Yu, L.7    Chen, Y.8    Su, J.9    Lang, G.10
  • 16
    • 85070239651 scopus 로고    scopus 로고
    • Efficient multiple organ localization in ct image using 3d region proposal network
    • Xu, X., Zhou, F., Liu, B., Fu, D., Bai, X., Efficient multiple organ localization in ct image using 3d region proposal network. IEEE Trans. Med. Imaging 38:8 (2019), 1885–1898.
    • (2019) IEEE Trans. Med. Imaging , vol.38 , Issue.8 , pp. 1885-1898
    • Xu, X.1    Zhou, F.2    Liu, B.3    Fu, D.4    Bai, X.5
  • 17
    • 85092247938 scopus 로고    scopus 로고
    • COVID-CT-dataset: a CT scan dataset about COVID-19, arXiv preprint arXiv:.
    • J. Zhao, Y. Zhang, X. He, P. Xie, COVID-CT-dataset: a CT scan dataset about COVID-19, arXiv preprint arXiv: 2003.13865 (2020).
    • (2020)
    • Zhao, J.1    Zhang, Y.2    He, X.3    Xie, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.