-
1
-
-
0020021698
-
Small random perturbations of Peano phenomena
-
(/82). MR0665404
-
BAFICO, R. and BALDI, P. (1981/82). Small random perturbations of Peano phenomena. Stochastics 6 279-292. MR0665404 https://doi.org/10.1080/17442508208833208
-
(1981)
Stochastics
, vol.6
, pp. 279-292
-
-
BAFICO, R.1
BALDI, P.2
-
2
-
-
85056088593
-
Analysis of a finite state many player game using its master equation
-
MR3860894
-
BAYRAKTAR, E. and COHEN, A. (2018). Analysis of a finite state many player game using its master equation. SIAM J. Control Optim. 56 3538-3568. MR3860894 https://doi.org/10.1137/17M113887X
-
(2018)
SIAM J. Control Optim
, vol.56
, pp. 3538-3568
-
-
BAYRAKTAR, E.1
COHEN, A.2
-
3
-
-
0032615649
-
Increasing propagation of chaos for mean field models
-
MR1669916
-
BEN AROUS, G. and ZEITOUNI, O. (1999). Increasing propagation of chaos for mean field models. Ann. Inst. Henri Poincaré Probab. Stat. 35 85-102. MR1669916 https://doi.org/10.1016/S0246-0203(99) 80006-5
-
(1999)
Ann. Inst. Henri Poincaré Probab. Stat
, vol.35
, pp. 85-102
-
-
BEN AROUS, G.1
ZEITOUNI, O.2
-
4
-
-
38249014213
-
Anonymous sequential games with aggregate uncertainty
-
MR1195676
-
BERGIN, J. and BERNHARDT, D. (1992). Anonymous sequential games with aggregate uncertainty. J. Math. Econom. 21 543-562. MR1195676 https://doi.org/10.1016/0304-4068(92)90026-4
-
(1992)
J. Math. Econom
, vol.21
, pp. 543-562
-
-
BERGIN, J.1
BERNHARDT, D.2
-
6
-
-
0026867786
-
Stochastic differential games: Occupation measure based approach
-
MR1163266
-
BORKAR, V. S. and GHOSH, M. K. (1992). Stochastic differential games: Occupation measure based approach. J. Optim. Theory Appl. 73 359-385. MR1163266 https://doi.org/10.1007/BF00940187
-
(1992)
J. Optim. Theory Appl
, vol.73
, pp. 359-385
-
-
BORKAR, V. S.1
GHOSH, M. K.2
-
7
-
-
0009036109
-
Changes of filtrations and of probability measures
-
MR0511775
-
BRÉMAUD, P. and YOR, M. (1978). Changes of filtrations and of probability measures. Z. Wahrsch. Verw. Gebiete 45 269-295. MR0511775 https://doi.org/10.1007/BF00537538
-
(1978)
Z. Wahrsch. Verw. Gebiete
, vol.45
, pp. 269-295
-
-
BRÉMAUD, P.1
YOR, M.2
-
8
-
-
84879748254
-
Mimicking an Itô process by a solution of a stochastic differential equation
-
MR3098443
-
BRUNICK, G. and SHREVE, S. (2013). Mimicking an Itô process by a solution of a stochastic differential equation. Ann. Appl. Probab. 23 1584-1628. MR3098443 https://doi.org/10.1214/12-aap881
-
(2013)
Ann. Appl. Probab
, vol.23
, pp. 1584-1628
-
-
BRUNICK, G.1
SHREVE, S.2
-
10
-
-
85021237122
-
The convergence problem in mean field games with local coupling
-
MR3679342
-
CARDALIAGUET, P. (2017). The convergence problem in mean field games with local coupling. Appl. Math. Optim. 76 177-215. MR3679342 https://doi.org/10.1007/s00245-017-9434-0
-
(2017)
Appl. Math. Optim
, vol.76
, pp. 177-215
-
-
CARDALIAGUET, P.1
-
11
-
-
85061119220
-
The Master Equation and the Convergence Problem in Mean Field Games
-
Princeton Univ. Press, Princeton, NJ. MR3967062
-
CARDALIAGUET, P., DELARUE, F., LASRY, J.-M. and LIONS, P.-L. (2019). The Master Equation and the Convergence Problem in Mean Field Games. Annals of Mathematics Studies 201. Princeton Univ. Press, Princeton, NJ. MR3967062
-
(2019)
Annals of Mathematics Studies
, vol.201
-
-
CARDALIAGUET, P.1
DELARUE, F.2
LASRY, J.-M.3
LIONS, P.-L.4
-
12
-
-
57849096692
-
Stochastic differential games with asymmetric information
-
MR2465706
-
CARDALIAGUET, P. and RAINER, C. (2009). Stochastic differential games with asymmetric information. Appl. Math. Optim. 59 1-36. MR2465706 https://doi.org/10.1007/s00245-008-9042-0
-
(2009)
Appl. Math. Optim
, vol.59
, pp. 1-36
-
-
CARDALIAGUET, P.1
RAINER, C.2
-
13
-
-
84967102597
-
-
Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications, SIAM, Philadelphia, PA. MR3629171
-
CARMONA, R. (2016). Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications. Financial Mathematics 1. SIAM, Philadelphia, PA. MR3629171
-
(2016)
Financial Mathematics
, vol.1
-
-
CARMONA, R.1
-
15
-
-
84881309217
-
Probabilistic analysis of mean-field games
-
MR3072222
-
CARMONA, R. and DELARUE, F. (2013). Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 2705-2734. MR3072222 https://doi.org/10.1137/120883499
-
(2013)
SIAM J. Control Optim
, vol.51
, pp. 2705-2734
-
-
CARMONA, R.1
DELARUE, F.2
-
16
-
-
85021744328
-
Probabilistic Theory of Mean Field Games: Vol. I, Mean Field FBSDEs, Control, and Games
-
Springer Verlag
-
CARMONA, R. and DELARUE, F. (2017). Probabilistic Theory of Mean Field Games: Vol. I, Mean Field FBSDEs, Control, and Games. Stochastic Analysis and Applications. Springer Verlag.
-
(2017)
Stochastic Analysis and Applications
-
-
CARMONA, R.1
DELARUE, F.2
-
17
-
-
85130936362
-
Probabilistic Theory of Mean Field Games with Applications. II: Mean Field Games with Common Noise and Master Equations
-
Springer, Cham. MR3753660
-
CARMONA, R. and DELARUE, F. (2018). Probabilistic Theory of Mean Field Games with Applications. II: Mean Field Games with Common Noise and Master Equations. Probability Theory and Stochastic Modelling 84. Springer, Cham. MR3753660
-
(2018)
Probability Theory and Stochastic Modelling
, vol.84
-
-
CARMONA, R.1
DELARUE, F.2
-
18
-
-
85018996101
-
Mean field games with common noise
-
MR3572323
-
CARMONA, R., DELARUE, F. and LACKER, D. (2016). Mean field games with common noise. Ann. Probab. 44 3740-3803. MR3572323 https://doi.org/10.1214/15-AOP1060
-
(2016)
Ann. Probab
, vol.44
, pp. 3740-3803
-
-
CARMONA, R.1
DELARUE, F.2
LACKER, D.3
-
19
-
-
84930019381
-
Mean field games and systemic risk
-
MR3325083
-
CARMONA, R., FOUQUE, J.-P. and SUN, L.-H. (2015). Mean field games and systemic risk. Commun. Math. Sci. 13 911-933. MR3325083 https://doi.org/10.4310/CMS.2015.v13.n4.a4
-
(2015)
Commun. Math. Sci
, vol.13
, pp. 911-933
-
-
CARMONA, R.1
FOUQUE, J.-P.2
SUN, L.-H.3
-
20
-
-
85071908390
-
On the convergence problem in mean field games: A two state model without uniqueness
-
MR3981375
-
CECCHIN, A., DAI PRA, P., FISCHER, M. and PELINO, G. (2019). On the convergence problem in mean field games: A two state model without uniqueness. SIAM J. Control Optim. 57 2443-2466. MR3981375 https://doi.org/10.1137/18M1222454
-
(2019)
SIAM J. Control Optim
, vol.57
, pp. 2443-2466
-
-
CECCHIN, A.1
DAI PRA, P.2
FISCHER, M.3
PELINO, G.4
-
21
-
-
85058804507
-
Convergence, fluctuations and large deviations for finite state mean field games via the master equation
-
MR4013871
-
CECCHIN, A. and PELINO, G. (2019). Convergence, fluctuations and large deviations for finite state mean field games via the master equation. Stochastic Process. Appl. 129 4510-4555. MR4013871 https://doi.org/10.1016/j.spa.2018.12.002
-
(2019)
Stochastic Process. Appl
, vol.129
, pp. 4510-4555
-
-
CECCHIN, A.1
PELINO, G.2
-
24
-
-
85066289105
-
Selection of equilibria in a linear quadratic mean-field game
-
MR4046528
-
DELARUE, F. and FOGUEN TCHUENDOM, R. (2020). Selection of equilibria in a linear quadratic mean-field game. Stochastic Process. Appl. 130 1000-1040. MR4046528 https://doi.org/10.1016/j.spa.2019.04.005
-
(2020)
Stochastic Process. Appl
, vol.130
, pp. 1000-1040
-
-
DELARUE, F.1
FOGUEN TCHUENDOM, R.2
-
25
-
-
85086705967
-
From the master equation to mean field game limit theory: Large deviations and concentration of measure
-
MR4079435
-
DELARUE, F., LACKER, D. and RAMANAN, K. (2020). From the master equation to mean field game limit theory: Large deviations and concentration of measure. Ann. Probab. 48 211-263. MR4079435 http://dx.doi.org/10.1214/19-AOP1359
-
(2020)
Ann. Probab
, vol.48
, pp. 211-263
-
-
DELARUE, F.1
LACKER, D.2
RAMANAN, K.3
-
26
-
-
85072069003
-
From the master equation to mean field game limit theory: A central limit theorem
-
Paper No. MR3954791
-
DELARUE, F., LACKER, D. and RAMANAN, K. (2019). From the master equation to mean field game limit theory: A central limit theorem. Electron. J. Probab. 24 Paper No. 51, 54. MR3954791 https://doi.org/10.1214/19-EJP298
-
(2019)
Electron. J. Probab
, vol.24
, Issue.51
, pp. 54
-
-
DELARUE, F.1
LACKER, D.2
RAMANAN, K.3
-
27
-
-
0040793012
-
Martingale measures and stochastic calculus
-
MR1027822
-
EL KAROUI, N. and MÉLÉARD, S. (1990). Martingale measures and stochastic calculus. Probab. Theory Related Fields 84 83-101. MR1027822 https://doi.org/10.1007/BF01288560
-
(1990)
Probab. Theory Related Fields
, vol.84
, pp. 83-101
-
-
EL KAROUI, N.1
MÉLÉARD, S.2
-
28
-
-
0001274938
-
Compactification methods in the control of degenerate diffusions: Existence of an optimal control
-
MR0878312
-
EL KAROUI, N., NGUYEN, D. and JEANBLANC-PICQUÉ, M. (1987). Compactification methods in the control of degenerate diffusions: Existence of an optimal control. Stochastics 20 169-219. MR0878312 https://doi.org/10.1080/17442508708833443
-
(1987)
Stochastics
, vol.20
, pp. 169-219
-
-
EL KAROUI, N.1
NGUYEN, D.2
JEANBLANC-PICQUÉ, M.3
-
29
-
-
0024068809
-
Existence of an optimal Markovian filter for the control under partial observations
-
MR0957652
-
EL KAROUI, N., NGUYEN, D. H. and JEANBLANC-PICQUÉ, M. (1988). Existence of an optimal Markovian filter for the control under partial observations. SIAM J. Control Optim. 26 1025-1061. MR0957652 https://doi.org/10.1137/0326057
-
(1988)
SIAM J. Control Optim
, vol.26
, pp. 1025-1061
-
-
EL KAROUI, N.1
NGUYEN, D. H.2
JEANBLANC-PICQUÉ, M.3
-
30
-
-
84887513526
-
The derivation of ergodic mean field game equations for several populations of players
-
MR3127148
-
FELEQI, E. (2013). The derivation of ergodic mean field game equations for several populations of players. Dyn. Games Appl. 3 523-536. MR3127148 https://doi.org/10.1007/s13235-013-0088-5
-
(2013)
Dyn. Games Appl
, vol.3
, pp. 523-536
-
-
FELEQI, E.1
-
31
-
-
36649027622
-
Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients
-
MR2375067
-
FIGALLI, A. (2008). Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254 109-153. MR2375067 https://doi.org/10.1016/j.jfa.2007.09.020
-
(2008)
J. Funct. Anal
, vol.254
, pp. 109-153
-
-
FIGALLI, A.1
-
32
-
-
0002764036
-
On certain questions in the theory of optimal control
-
MR0149985
-
FILIPPOV, A. F. (1962). On certain questions in the theory of optimal control. J. SIAM Control Ser. A 1 76-84. MR0149985
-
(1962)
J. SIAM Control Ser. A
, vol.1
, pp. 76-84
-
-
FILIPPOV, A. F.1
-
33
-
-
85019652145
-
On the connection between symmetric N-player games and mean field games
-
MR3655853
-
FISCHER, M. (2017). On the connection between symmetric N-player games and mean field games. Ann. Appl. Probab. 27 757-810. MR3655853 https://doi.org/10.1214/16-AAP1215
-
(2017)
Ann. Appl. Probab
, vol.27
, pp. 757-810
-
-
FISCHER, M.1
-
34
-
-
0003006765
-
Generalized solutions in optimal stochastic control
-
MR0688675
-
FLEMING, W. H. (1977). Generalized solutions in optimal stochastic control. In Differential Games and Control Theory, II (Proc. 2nd Conf., Univ. Rhode Island, Kingston, R.I., 1976) Lecture Notes in Pure and Appl. Math. 30 147-165. MR0688675
-
(1977)
In Differential Games and Control Theory, II (Proc. 2nd Conf., Univ. Rhode Island, Kingston, R.I., 1976) Lecture Notes in Pure and Appl. Math
, vol.30
, pp. 147-165
-
-
FLEMING, W. H.1
-
35
-
-
84972492745
-
On stochastic relaxed control for partially observed diffusions
-
MR0738919
-
FLEMING, W. H. and NISIO, M. (1984). On stochastic relaxed control for partially observed diffusions. Nagoya Math. J. 93 71-108. MR0738919 https://doi.org/10.1017/S0027763000020742
-
(1984)
Nagoya Math. J
, vol.93
, pp. 71-108
-
-
FLEMING, W. H.1
NISIO, M.2
-
36
-
-
0039930261
-
Stochastic differential games
-
MR0292528
-
FRIEDMAN, A. (1972). Stochastic differential games. J. Differential Equations 11 79-108. MR0292528 https://doi.org/10.1016/0022-0396(72)90082-4
-
(1972)
J. Differential Equations
, vol.11
, pp. 79-108
-
-
FRIEDMAN, A.1
-
37
-
-
38249042970
-
Limit games and limit equilibria
-
MR0841698
-
FUDENBERG, D. and LEVINE, D. (1986). Limit games and limit equilibria. J. Econom. Theory 38 261-279. MR0841698 https://doi.org/10.1016/0022-0531(86)90118-3
-
(1986)
J. Econom. Theory
, vol.38
, pp. 261-279
-
-
FUDENBERG, D.1
LEVINE, D.2
-
38
-
-
84971014148
-
Open-loop and closed-loop equilibria in dynamic games with many players
-
World Scientific
-
FUDENBERG, D. and LEVINE, D. (2009). Open-loop and closed-loop equilibria in dynamic games with many players. In A Long-Run Collaboration on Long-Run Games 41-58. World Scientific.
-
(2009)
A Long-Run Collaboration on Long-Run Games
, pp. 41-58
-
-
FUDENBERG, D.1
LEVINE, D.2
-
39
-
-
84941797484
-
Existence of a solution to an equation arising from the theory of mean field games
-
MR3397332
-
GANGBO, W. and SWIECH, A. (2015). Existence of a solution to an equation arising from the theory of mean field games. J. Differential Equations 259 6573-6643. MR3397332 https://doi.org/10.1016/j.jde.2015.08.001
-
(2015)
J. Differential Equations
, vol.259
, pp. 6573-6643
-
-
GANGBO, W.1
SWIECH, A.2
-
40
-
-
84985400388
-
On the McKean-Vlasov limit for interacting diffusions
-
MR0968996
-
GÄRTNER, J. (1988). On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137 197-248. MR0968996 https://doi.org/10.1002/mana.19881370116
-
(1988)
Math. Nachr
, vol.137
, pp. 197-248
-
-
GÄRTNER, J.1
-
41
-
-
0000335830
-
Mimicking the one-dimensional marginal distributions of processes having an Itô differential
-
MR0833267
-
GYÖNGY, I. (1986). Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Related Fields 71 501-516. MR0833267 https://doi.org/10.1007/BF00699039
-
(1986)
Probab. Theory Related Fields
, vol.71
, pp. 501-516
-
-
GYÖNGY, I.1
-
42
-
-
0029276198
-
Zero-sum stochastic differential games and backward equations
-
MR1321134
-
HAMADENE, S. and LEPELTIER, J.-P. (1995). Zero-sum stochastic differential games and backward equations. Systems Control Lett. 24 259-263. MR1321134 https://doi.org/10.1016/0167-6911(94)00011-J
-
(1995)
Systems Control Lett
, vol.24
, pp. 259-263
-
-
HAMADENE, S.1
LEPELTIER, J.-P.2
-
43
-
-
0025460639
-
On the existence of optimal controls
-
MR1051628
-
HAUSSMANN, U. G. and LEPELTIER, J.-P. (1990). On the existence of optimal controls. SIAM J. Control Optim. 28 851-902. MR1051628 https://doi.org/10.1137/0328049
-
(1990)
SIAM J. Control Optim
, vol.28
, pp. 851-902
-
-
HAUSSMANN, U. G.1
LEPELTIER, J.-P.2
-
44
-
-
34648831837
-
Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized Nash equilibria
-
MR2352434
-
HUANG, M., CAINES, P. E. and MALHAMÉ, R. P. (2007). Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized Nash equilibria. IEEE Trans. Automat. Control 52 1560-1571. MR2352434 https://doi.org/10.1109/TAC.2007.904450
-
(2007)
IEEE Trans. Automat. Control
, vol.52
, pp. 1560-1571
-
-
HUANG, M.1
CAINES, P. E.2
MALHAMÉ, R. P.3
-
45
-
-
39549087376
-
Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
-
MR2346927
-
HUANG, M., MALHAMÉ, R. P. and CAINES, P. E. (2006). Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 221-251. MR2346927
-
(2006)
Commun. Inf. Syst
, vol.6
, pp. 221-251
-
-
HUANG, M.1
MALHAMÉ, R. P.2
CAINES, P. E.3
-
46
-
-
84995543095
-
Mean field limit and propagation of chaos for Vlasov systems with bounded forces
-
MR3558251 [47] JACOD, J. and MÉMIN, J. (1981). Weak and strong solutions of stochastic differential equations: Existence and stability Stochastic Integrals (Proc. Sympos., Univ. Durham, Durham, 1980). Lecture Notes in Math. 851 169-212. Springer, Berlin. MR0620991
-
JABIN, P.-E. and WANG, Z. (2016). Mean field limit and propagation of chaos for Vlasov systems with bounded forces. J. Funct. Anal. 271 3588-3627. MR3558251 https://doi.org/10.1016/j.jfa.2016.09.014 [47] JACOD, J. and MÉMIN, J. (1981). Weak and strong solutions of stochastic differential equations: Existence and stability. In Stochastic Integrals (Proc. Sympos., Univ. Durham, Durham, 1980). Lecture Notes in Math. 851 169-212. Springer, Berlin. MR0620991
-
(2016)
J. Funct. Anal
, vol.271
, pp. 3588-3627
-
-
JABIN, P.-E.1
WANG, Z.2
-
47
-
-
0004201402
-
-
2nd ed. Probability and Its Applications (New York). Springer, New York. MR1876169
-
KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. MR1876169 https://doi.org/10.1007/978-1-4757-4015-8
-
(2002)
Foundations of Modern Probability
-
-
KALLENBERG, O.1
-
48
-
-
12944260508
-
Strong solutions of stochastic equations with singular time dependent drift
-
MR2117951
-
KRYLOV, N. V. and RÖCKNER, M. (2005). Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields 131 154-196. MR2117951 https://doi.org/10.1007/ s00440-004-0361-z
-
(2005)
Probab. Theory Related Fields
, vol.131
, pp. 154-196
-
-
KRYLOV, N. V.1
RÖCKNER, M.2
-
49
-
-
84933553528
-
Mean field games via controlled martingale problems: Existence of Markovian equilibria
-
MR3332857
-
LACKER, D. (2015). Mean field games via controlled martingale problems: Existence of Markovian equilibria. Stochastic Process. Appl. 125 2856-2894. MR3332857 https://doi.org/10.1016/j.spa.2015.02.006
-
(2015)
Stochastic Process. Appl
, vol.125
, pp. 2856-2894
-
-
LACKER, D.1
-
50
-
-
84936864615
-
A general characterization of the mean field limit for stochastic differential games
-
MR3520014
-
LACKER, D. (2016). A general characterization of the mean field limit for stochastic differential games. Probab. Theory Related Fields 165 581-648. MR3520014 https://doi.org/10.1007/s00440-015-0641-9
-
(2016)
Probab. Theory Related Fields
, vol.165
, pp. 581-648
-
-
LACKER, D.1
-
51
-
-
85050797319
-
On a strong form of propagation of chaos for McKean-Vlasov equations
-
Paper No. MR3841406
-
LACKER, D. (2018). On a strong form of propagation of chaos for McKean-Vlasov equations. Electron. Commun. Probab. 23 Paper No. 45, 11. MR3841406 https://doi.org/10.1214/18-ECP150
-
(2018)
Electron. Commun. Probab
, vol.23
, Issue.45
, pp. 11
-
-
LACKER, D.1
-
52
-
-
33750627999
-
Jeux à champ moyen. I. Le cas stationnaire
-
MR2269875
-
LASRY, J.-M. and LIONS, P.-L. (2006). Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 619-625. MR2269875 https://doi.org/10.1016/j.crma.2006.09.019
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, pp. 619-625
-
-
LASRY, J.-M.1
LIONS, P.-L.2
-
53
-
-
33751077273
-
Jeux à champ moyen. II. Horizon fini et contrôle optimal
-
MR2271747
-
LASRY, J.-M. and LIONS, P.-L. (2006). Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 679-684. MR2271747 https://doi.org/10.1016/j.crma.2006.09.018
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, pp. 679-684
-
-
LASRY, J.-M.1
LIONS, P.-L.2
-
54
-
-
34047127341
-
Mean field games
-
MR2295621
-
LASRY, J.-M. and LIONS, P.-L. (2007). Mean field games. Jpn. J. Math. 2 229-260. MR2295621 https://doi.org/10.1007/s11537-007-0657-8
-
(2007)
Jpn. J. Math
, vol.2
, pp. 229-260
-
-
LASRY, J.-M.1
LIONS, P.-L.2
-
55
-
-
84905191737
-
Measurability of semimartingale characteristics with respect to the probability law
-
MR3249357
-
NEUFELD, A. and NUTZ, M. (2014). Measurability of semimartingale characteristics with respect to the probability law. Stochastic Process. Appl. 124 3819-3845. MR3249357 https://doi.org/10.1016/j.spa.2014.07.006
-
(2014)
Stochastic Process. Appl
, vol.124
, pp. 3819-3845
-
-
NEUFELD, A.1
NUTZ, M.2
-
57
-
-
0040554658
-
A martingale approach to the law of large numbers for weakly interacting stochastic processes
-
MR0735849
-
OELSCHLÄGER, K. (1984). A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Probab. 12 458-479. MR0735849
-
(1984)
Ann. Probab
, vol.12
, pp. 458-479
-
-
OELSCHLÄGER, K.1
-
58
-
-
0003522826
-
-
2nd ed. Stochastic Modelling and Applied Probability 21. Springer, Berlin. Version 2.1, Corrected third printing. MR2273672
-
PROTTER, P. E. (2005). Stochastic Integration and Differential Equations, 2nd ed. Stochastic Modelling and Applied Probability 21. Springer, Berlin. Version 2.1, Corrected third printing. MR2273672 https://doi.org/10.1007/978-3-662-10061-5
-
(2005)
Stochastic Integration and Differential Equations
-
-
PROTTER, P. E.1
-
59
-
-
0009875547
-
The existence of optimal controls
-
MR0136844
-
ROXIN, E. (1962). The existence of optimal controls. Michigan Math. J. 9 109-119. MR0136844
-
(1962)
Michigan Math. J
, vol.9
, pp. 109-119
-
-
ROXIN, E.1
-
60
-
-
0003655416
-
-
2nd ed. Macmillan. MR0151555
-
ROYDEN, H. L. (1968). Real Analysis, 2nd ed. Macmillan. MR0151555
-
(1968)
Real Analysis
-
-
ROYDEN, H. L.1
-
62
-
-
0001105004
-
Topics in propagation of chaos. In École D'Été de Probabilités de Saint-Flour XIX-1989
-
Lecture Notes in Math. Springer, Berlin. MR1108185
-
SZNITMAN, A.-S. (1991). Topics in propagation of chaos. In École D'Été de Probabilités de Saint-Flour XIX-1989. Lecture Notes in Math. 1464 165-251. Springer, Berlin. MR1108185 https://doi.org/10.1007/BFb0085169
-
(1991)
, vol.1464
, pp. 165-251
-
-
SZNITMAN, A.-S.1
-
63
-
-
84877293036
-
Zero noise limits using local times
-
MR3056068
-
TREVISAN, D. (2013). Zero noise limits using local times. Electron. Commun. Probab. 18 no. 31, 7. MR3056068 https://doi.org/10.1214/ECP.v18-2587
-
(2013)
Electron. Commun. Probab
, vol.18
, Issue.31
, pp. 7
-
-
TREVISAN, D.1
-
64
-
-
84963861135
-
Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients
-
Paper No. MR3485364
-
TREVISAN, D. (2016). Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21 Paper No. 22, 41. MR3485364 https://doi.org/10.1214/ 16-EJP4453
-
(2016)
Electron. J. Probab
, vol.21
, Issue.22
, pp. 41
-
-
TREVISAN, D.1
-
65
-
-
0000028686
-
On strong solutions and explicit formulas for solutions of stochastic integral equations
-
VERETENNIKOV, A. Y. (1981). On strong solutions and explicit formulas for solutions of stochastic integral equations. Math. USSR, Sb. 39 387.
-
(1981)
Math. USSR, Sb
, vol.39
, pp. 387
-
-
VERETENNIKOV, A. Y.1
-
66
-
-
2442557820
-
Topics in Optimal Transportation
-
Amer. Math. Soc., Providence, RI. MR1964483
-
VILLANI, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI. MR1964483 https://doi.org/10.1090/gsm/058
-
(2003)
Graduate Studies in Mathematics
, vol.58
-
-
VILLANI, C.1
-
67
-
-
0000659593
-
An introduction to stochastic partial differential equations. In École D'été de Probabilités de Saint-Flour, XIV-1984
-
Lecture Notes in Math. Springer, Berlin. MR0876085
-
WALSH, J. B. (1986). An introduction to stochastic partial differential equations. In École D'été de Probabilités de Saint-Flour, XIV-1984. Lecture Notes in Math. 1180 265-439. Springer, Berlin. MR0876085 https://doi.org/10.1007/BFb0074920
-
(1986)
, vol.1180
, pp. 265-439
-
-
WALSH, J. B.1
|