메뉴 건너뛰기




Volumn 30, Issue 4, 2020, Pages 1693-1761

On the convergence of closed-loop nash equilibria to the mean field game limit

Author keywords

Closed loop controls; McKean Vlasov equations; Mean field games; Relaxed controls; Stochastic differential games

Indexed keywords


EID: 85090312609     PISSN: 10505164     EISSN: None     Source Type: Journal    
DOI: 10.1214/19-AAP1541     Document Type: Article
Times cited : (94)

References (67)
  • 1
    • 0020021698 scopus 로고
    • Small random perturbations of Peano phenomena
    • (/82). MR0665404
    • BAFICO, R. and BALDI, P. (1981/82). Small random perturbations of Peano phenomena. Stochastics 6 279-292. MR0665404 https://doi.org/10.1080/17442508208833208
    • (1981) Stochastics , vol.6 , pp. 279-292
    • BAFICO, R.1    BALDI, P.2
  • 2
    • 85056088593 scopus 로고    scopus 로고
    • Analysis of a finite state many player game using its master equation
    • MR3860894
    • BAYRAKTAR, E. and COHEN, A. (2018). Analysis of a finite state many player game using its master equation. SIAM J. Control Optim. 56 3538-3568. MR3860894 https://doi.org/10.1137/17M113887X
    • (2018) SIAM J. Control Optim , vol.56 , pp. 3538-3568
    • BAYRAKTAR, E.1    COHEN, A.2
  • 3
    • 0032615649 scopus 로고    scopus 로고
    • Increasing propagation of chaos for mean field models
    • MR1669916
    • BEN AROUS, G. and ZEITOUNI, O. (1999). Increasing propagation of chaos for mean field models. Ann. Inst. Henri Poincaré Probab. Stat. 35 85-102. MR1669916 https://doi.org/10.1016/S0246-0203(99) 80006-5
    • (1999) Ann. Inst. Henri Poincaré Probab. Stat , vol.35 , pp. 85-102
    • BEN AROUS, G.1    ZEITOUNI, O.2
  • 4
    • 38249014213 scopus 로고
    • Anonymous sequential games with aggregate uncertainty
    • MR1195676
    • BERGIN, J. and BERNHARDT, D. (1992). Anonymous sequential games with aggregate uncertainty. J. Math. Econom. 21 543-562. MR1195676 https://doi.org/10.1016/0304-4068(92)90026-4
    • (1992) J. Math. Econom , vol.21 , pp. 543-562
    • BERGIN, J.1    BERNHARDT, D.2
  • 6
    • 0026867786 scopus 로고
    • Stochastic differential games: Occupation measure based approach
    • MR1163266
    • BORKAR, V. S. and GHOSH, M. K. (1992). Stochastic differential games: Occupation measure based approach. J. Optim. Theory Appl. 73 359-385. MR1163266 https://doi.org/10.1007/BF00940187
    • (1992) J. Optim. Theory Appl , vol.73 , pp. 359-385
    • BORKAR, V. S.1    GHOSH, M. K.2
  • 7
    • 0009036109 scopus 로고
    • Changes of filtrations and of probability measures
    • MR0511775
    • BRÉMAUD, P. and YOR, M. (1978). Changes of filtrations and of probability measures. Z. Wahrsch. Verw. Gebiete 45 269-295. MR0511775 https://doi.org/10.1007/BF00537538
    • (1978) Z. Wahrsch. Verw. Gebiete , vol.45 , pp. 269-295
    • BRÉMAUD, P.1    YOR, M.2
  • 8
    • 84879748254 scopus 로고    scopus 로고
    • Mimicking an Itô process by a solution of a stochastic differential equation
    • MR3098443
    • BRUNICK, G. and SHREVE, S. (2013). Mimicking an Itô process by a solution of a stochastic differential equation. Ann. Appl. Probab. 23 1584-1628. MR3098443 https://doi.org/10.1214/12-aap881
    • (2013) Ann. Appl. Probab , vol.23 , pp. 1584-1628
    • BRUNICK, G.1    SHREVE, S.2
  • 10
    • 85021237122 scopus 로고    scopus 로고
    • The convergence problem in mean field games with local coupling
    • MR3679342
    • CARDALIAGUET, P. (2017). The convergence problem in mean field games with local coupling. Appl. Math. Optim. 76 177-215. MR3679342 https://doi.org/10.1007/s00245-017-9434-0
    • (2017) Appl. Math. Optim , vol.76 , pp. 177-215
    • CARDALIAGUET, P.1
  • 11
    • 85061119220 scopus 로고    scopus 로고
    • The Master Equation and the Convergence Problem in Mean Field Games
    • Princeton Univ. Press, Princeton, NJ. MR3967062
    • CARDALIAGUET, P., DELARUE, F., LASRY, J.-M. and LIONS, P.-L. (2019). The Master Equation and the Convergence Problem in Mean Field Games. Annals of Mathematics Studies 201. Princeton Univ. Press, Princeton, NJ. MR3967062
    • (2019) Annals of Mathematics Studies , vol.201
    • CARDALIAGUET, P.1    DELARUE, F.2    LASRY, J.-M.3    LIONS, P.-L.4
  • 12
    • 57849096692 scopus 로고    scopus 로고
    • Stochastic differential games with asymmetric information
    • MR2465706
    • CARDALIAGUET, P. and RAINER, C. (2009). Stochastic differential games with asymmetric information. Appl. Math. Optim. 59 1-36. MR2465706 https://doi.org/10.1007/s00245-008-9042-0
    • (2009) Appl. Math. Optim , vol.59 , pp. 1-36
    • CARDALIAGUET, P.1    RAINER, C.2
  • 13
    • 84967102597 scopus 로고    scopus 로고
    • Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications, SIAM, Philadelphia, PA. MR3629171
    • CARMONA, R. (2016). Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games with Financial Applications. Financial Mathematics 1. SIAM, Philadelphia, PA. MR3629171
    • (2016) Financial Mathematics , vol.1
    • CARMONA, R.1
  • 15
    • 84881309217 scopus 로고    scopus 로고
    • Probabilistic analysis of mean-field games
    • MR3072222
    • CARMONA, R. and DELARUE, F. (2013). Probabilistic analysis of mean-field games. SIAM J. Control Optim. 51 2705-2734. MR3072222 https://doi.org/10.1137/120883499
    • (2013) SIAM J. Control Optim , vol.51 , pp. 2705-2734
    • CARMONA, R.1    DELARUE, F.2
  • 16
    • 85021744328 scopus 로고    scopus 로고
    • Probabilistic Theory of Mean Field Games: Vol. I, Mean Field FBSDEs, Control, and Games
    • Springer Verlag
    • CARMONA, R. and DELARUE, F. (2017). Probabilistic Theory of Mean Field Games: Vol. I, Mean Field FBSDEs, Control, and Games. Stochastic Analysis and Applications. Springer Verlag.
    • (2017) Stochastic Analysis and Applications
    • CARMONA, R.1    DELARUE, F.2
  • 17
    • 85130936362 scopus 로고    scopus 로고
    • Probabilistic Theory of Mean Field Games with Applications. II: Mean Field Games with Common Noise and Master Equations
    • Springer, Cham. MR3753660
    • CARMONA, R. and DELARUE, F. (2018). Probabilistic Theory of Mean Field Games with Applications. II: Mean Field Games with Common Noise and Master Equations. Probability Theory and Stochastic Modelling 84. Springer, Cham. MR3753660
    • (2018) Probability Theory and Stochastic Modelling , vol.84
    • CARMONA, R.1    DELARUE, F.2
  • 18
    • 85018996101 scopus 로고    scopus 로고
    • Mean field games with common noise
    • MR3572323
    • CARMONA, R., DELARUE, F. and LACKER, D. (2016). Mean field games with common noise. Ann. Probab. 44 3740-3803. MR3572323 https://doi.org/10.1214/15-AOP1060
    • (2016) Ann. Probab , vol.44 , pp. 3740-3803
    • CARMONA, R.1    DELARUE, F.2    LACKER, D.3
  • 19
    • 84930019381 scopus 로고    scopus 로고
    • Mean field games and systemic risk
    • MR3325083
    • CARMONA, R., FOUQUE, J.-P. and SUN, L.-H. (2015). Mean field games and systemic risk. Commun. Math. Sci. 13 911-933. MR3325083 https://doi.org/10.4310/CMS.2015.v13.n4.a4
    • (2015) Commun. Math. Sci , vol.13 , pp. 911-933
    • CARMONA, R.1    FOUQUE, J.-P.2    SUN, L.-H.3
  • 20
    • 85071908390 scopus 로고    scopus 로고
    • On the convergence problem in mean field games: A two state model without uniqueness
    • MR3981375
    • CECCHIN, A., DAI PRA, P., FISCHER, M. and PELINO, G. (2019). On the convergence problem in mean field games: A two state model without uniqueness. SIAM J. Control Optim. 57 2443-2466. MR3981375 https://doi.org/10.1137/18M1222454
    • (2019) SIAM J. Control Optim , vol.57 , pp. 2443-2466
    • CECCHIN, A.1    DAI PRA, P.2    FISCHER, M.3    PELINO, G.4
  • 21
    • 85058804507 scopus 로고    scopus 로고
    • Convergence, fluctuations and large deviations for finite state mean field games via the master equation
    • MR4013871
    • CECCHIN, A. and PELINO, G. (2019). Convergence, fluctuations and large deviations for finite state mean field games via the master equation. Stochastic Process. Appl. 129 4510-4555. MR4013871 https://doi.org/10.1016/j.spa.2018.12.002
    • (2019) Stochastic Process. Appl , vol.129 , pp. 4510-4555
    • CECCHIN, A.1    PELINO, G.2
  • 24
    • 85066289105 scopus 로고    scopus 로고
    • Selection of equilibria in a linear quadratic mean-field game
    • MR4046528
    • DELARUE, F. and FOGUEN TCHUENDOM, R. (2020). Selection of equilibria in a linear quadratic mean-field game. Stochastic Process. Appl. 130 1000-1040. MR4046528 https://doi.org/10.1016/j.spa.2019.04.005
    • (2020) Stochastic Process. Appl , vol.130 , pp. 1000-1040
    • DELARUE, F.1    FOGUEN TCHUENDOM, R.2
  • 25
    • 85086705967 scopus 로고    scopus 로고
    • From the master equation to mean field game limit theory: Large deviations and concentration of measure
    • MR4079435
    • DELARUE, F., LACKER, D. and RAMANAN, K. (2020). From the master equation to mean field game limit theory: Large deviations and concentration of measure. Ann. Probab. 48 211-263. MR4079435 http://dx.doi.org/10.1214/19-AOP1359
    • (2020) Ann. Probab , vol.48 , pp. 211-263
    • DELARUE, F.1    LACKER, D.2    RAMANAN, K.3
  • 26
    • 85072069003 scopus 로고    scopus 로고
    • From the master equation to mean field game limit theory: A central limit theorem
    • Paper No. MR3954791
    • DELARUE, F., LACKER, D. and RAMANAN, K. (2019). From the master equation to mean field game limit theory: A central limit theorem. Electron. J. Probab. 24 Paper No. 51, 54. MR3954791 https://doi.org/10.1214/19-EJP298
    • (2019) Electron. J. Probab , vol.24 , Issue.51 , pp. 54
    • DELARUE, F.1    LACKER, D.2    RAMANAN, K.3
  • 27
    • 0040793012 scopus 로고
    • Martingale measures and stochastic calculus
    • MR1027822
    • EL KAROUI, N. and MÉLÉARD, S. (1990). Martingale measures and stochastic calculus. Probab. Theory Related Fields 84 83-101. MR1027822 https://doi.org/10.1007/BF01288560
    • (1990) Probab. Theory Related Fields , vol.84 , pp. 83-101
    • EL KAROUI, N.1    MÉLÉARD, S.2
  • 28
    • 0001274938 scopus 로고
    • Compactification methods in the control of degenerate diffusions: Existence of an optimal control
    • MR0878312
    • EL KAROUI, N., NGUYEN, D. and JEANBLANC-PICQUÉ, M. (1987). Compactification methods in the control of degenerate diffusions: Existence of an optimal control. Stochastics 20 169-219. MR0878312 https://doi.org/10.1080/17442508708833443
    • (1987) Stochastics , vol.20 , pp. 169-219
    • EL KAROUI, N.1    NGUYEN, D.2    JEANBLANC-PICQUÉ, M.3
  • 29
    • 0024068809 scopus 로고
    • Existence of an optimal Markovian filter for the control under partial observations
    • MR0957652
    • EL KAROUI, N., NGUYEN, D. H. and JEANBLANC-PICQUÉ, M. (1988). Existence of an optimal Markovian filter for the control under partial observations. SIAM J. Control Optim. 26 1025-1061. MR0957652 https://doi.org/10.1137/0326057
    • (1988) SIAM J. Control Optim , vol.26 , pp. 1025-1061
    • EL KAROUI, N.1    NGUYEN, D. H.2    JEANBLANC-PICQUÉ, M.3
  • 30
    • 84887513526 scopus 로고    scopus 로고
    • The derivation of ergodic mean field game equations for several populations of players
    • MR3127148
    • FELEQI, E. (2013). The derivation of ergodic mean field game equations for several populations of players. Dyn. Games Appl. 3 523-536. MR3127148 https://doi.org/10.1007/s13235-013-0088-5
    • (2013) Dyn. Games Appl , vol.3 , pp. 523-536
    • FELEQI, E.1
  • 31
    • 36649027622 scopus 로고    scopus 로고
    • Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients
    • MR2375067
    • FIGALLI, A. (2008). Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients. J. Funct. Anal. 254 109-153. MR2375067 https://doi.org/10.1016/j.jfa.2007.09.020
    • (2008) J. Funct. Anal , vol.254 , pp. 109-153
    • FIGALLI, A.1
  • 32
    • 0002764036 scopus 로고
    • On certain questions in the theory of optimal control
    • MR0149985
    • FILIPPOV, A. F. (1962). On certain questions in the theory of optimal control. J. SIAM Control Ser. A 1 76-84. MR0149985
    • (1962) J. SIAM Control Ser. A , vol.1 , pp. 76-84
    • FILIPPOV, A. F.1
  • 33
    • 85019652145 scopus 로고    scopus 로고
    • On the connection between symmetric N-player games and mean field games
    • MR3655853
    • FISCHER, M. (2017). On the connection between symmetric N-player games and mean field games. Ann. Appl. Probab. 27 757-810. MR3655853 https://doi.org/10.1214/16-AAP1215
    • (2017) Ann. Appl. Probab , vol.27 , pp. 757-810
    • FISCHER, M.1
  • 35
    • 84972492745 scopus 로고
    • On stochastic relaxed control for partially observed diffusions
    • MR0738919
    • FLEMING, W. H. and NISIO, M. (1984). On stochastic relaxed control for partially observed diffusions. Nagoya Math. J. 93 71-108. MR0738919 https://doi.org/10.1017/S0027763000020742
    • (1984) Nagoya Math. J , vol.93 , pp. 71-108
    • FLEMING, W. H.1    NISIO, M.2
  • 36
    • 0039930261 scopus 로고
    • Stochastic differential games
    • MR0292528
    • FRIEDMAN, A. (1972). Stochastic differential games. J. Differential Equations 11 79-108. MR0292528 https://doi.org/10.1016/0022-0396(72)90082-4
    • (1972) J. Differential Equations , vol.11 , pp. 79-108
    • FRIEDMAN, A.1
  • 37
    • 38249042970 scopus 로고
    • Limit games and limit equilibria
    • MR0841698
    • FUDENBERG, D. and LEVINE, D. (1986). Limit games and limit equilibria. J. Econom. Theory 38 261-279. MR0841698 https://doi.org/10.1016/0022-0531(86)90118-3
    • (1986) J. Econom. Theory , vol.38 , pp. 261-279
    • FUDENBERG, D.1    LEVINE, D.2
  • 38
    • 84971014148 scopus 로고    scopus 로고
    • Open-loop and closed-loop equilibria in dynamic games with many players
    • World Scientific
    • FUDENBERG, D. and LEVINE, D. (2009). Open-loop and closed-loop equilibria in dynamic games with many players. In A Long-Run Collaboration on Long-Run Games 41-58. World Scientific.
    • (2009) A Long-Run Collaboration on Long-Run Games , pp. 41-58
    • FUDENBERG, D.1    LEVINE, D.2
  • 39
    • 84941797484 scopus 로고    scopus 로고
    • Existence of a solution to an equation arising from the theory of mean field games
    • MR3397332
    • GANGBO, W. and SWIECH, A. (2015). Existence of a solution to an equation arising from the theory of mean field games. J. Differential Equations 259 6573-6643. MR3397332 https://doi.org/10.1016/j.jde.2015.08.001
    • (2015) J. Differential Equations , vol.259 , pp. 6573-6643
    • GANGBO, W.1    SWIECH, A.2
  • 40
    • 84985400388 scopus 로고
    • On the McKean-Vlasov limit for interacting diffusions
    • MR0968996
    • GÄRTNER, J. (1988). On the McKean-Vlasov limit for interacting diffusions. Math. Nachr. 137 197-248. MR0968996 https://doi.org/10.1002/mana.19881370116
    • (1988) Math. Nachr , vol.137 , pp. 197-248
    • GÄRTNER, J.1
  • 41
    • 0000335830 scopus 로고
    • Mimicking the one-dimensional marginal distributions of processes having an Itô differential
    • MR0833267
    • GYÖNGY, I. (1986). Mimicking the one-dimensional marginal distributions of processes having an Itô differential. Probab. Theory Related Fields 71 501-516. MR0833267 https://doi.org/10.1007/BF00699039
    • (1986) Probab. Theory Related Fields , vol.71 , pp. 501-516
    • GYÖNGY, I.1
  • 42
    • 0029276198 scopus 로고
    • Zero-sum stochastic differential games and backward equations
    • MR1321134
    • HAMADENE, S. and LEPELTIER, J.-P. (1995). Zero-sum stochastic differential games and backward equations. Systems Control Lett. 24 259-263. MR1321134 https://doi.org/10.1016/0167-6911(94)00011-J
    • (1995) Systems Control Lett , vol.24 , pp. 259-263
    • HAMADENE, S.1    LEPELTIER, J.-P.2
  • 43
    • 0025460639 scopus 로고
    • On the existence of optimal controls
    • MR1051628
    • HAUSSMANN, U. G. and LEPELTIER, J.-P. (1990). On the existence of optimal controls. SIAM J. Control Optim. 28 851-902. MR1051628 https://doi.org/10.1137/0328049
    • (1990) SIAM J. Control Optim , vol.28 , pp. 851-902
    • HAUSSMANN, U. G.1    LEPELTIER, J.-P.2
  • 44
    • 34648831837 scopus 로고    scopus 로고
    • Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized Nash equilibria
    • MR2352434
    • HUANG, M., CAINES, P. E. and MALHAMÉ, R. P. (2007). Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized Nash equilibria. IEEE Trans. Automat. Control 52 1560-1571. MR2352434 https://doi.org/10.1109/TAC.2007.904450
    • (2007) IEEE Trans. Automat. Control , vol.52 , pp. 1560-1571
    • HUANG, M.1    CAINES, P. E.2    MALHAMÉ, R. P.3
  • 45
    • 39549087376 scopus 로고    scopus 로고
    • Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
    • MR2346927
    • HUANG, M., MALHAMÉ, R. P. and CAINES, P. E. (2006). Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 221-251. MR2346927
    • (2006) Commun. Inf. Syst , vol.6 , pp. 221-251
    • HUANG, M.1    MALHAMÉ, R. P.2    CAINES, P. E.3
  • 46
    • 84995543095 scopus 로고    scopus 로고
    • Mean field limit and propagation of chaos for Vlasov systems with bounded forces
    • MR3558251 [47] JACOD, J. and MÉMIN, J. (1981). Weak and strong solutions of stochastic differential equations: Existence and stability Stochastic Integrals (Proc. Sympos., Univ. Durham, Durham, 1980). Lecture Notes in Math. 851 169-212. Springer, Berlin. MR0620991
    • JABIN, P.-E. and WANG, Z. (2016). Mean field limit and propagation of chaos for Vlasov systems with bounded forces. J. Funct. Anal. 271 3588-3627. MR3558251 https://doi.org/10.1016/j.jfa.2016.09.014 [47] JACOD, J. and MÉMIN, J. (1981). Weak and strong solutions of stochastic differential equations: Existence and stability. In Stochastic Integrals (Proc. Sympos., Univ. Durham, Durham, 1980). Lecture Notes in Math. 851 169-212. Springer, Berlin. MR0620991
    • (2016) J. Funct. Anal , vol.271 , pp. 3588-3627
    • JABIN, P.-E.1    WANG, Z.2
  • 47
    • 0004201402 scopus 로고    scopus 로고
    • 2nd ed. Probability and Its Applications (New York). Springer, New York. MR1876169
    • KALLENBERG, O. (2002). Foundations of Modern Probability, 2nd ed. Probability and Its Applications (New York). Springer, New York. MR1876169 https://doi.org/10.1007/978-1-4757-4015-8
    • (2002) Foundations of Modern Probability
    • KALLENBERG, O.1
  • 48
    • 12944260508 scopus 로고    scopus 로고
    • Strong solutions of stochastic equations with singular time dependent drift
    • MR2117951
    • KRYLOV, N. V. and RÖCKNER, M. (2005). Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields 131 154-196. MR2117951 https://doi.org/10.1007/ s00440-004-0361-z
    • (2005) Probab. Theory Related Fields , vol.131 , pp. 154-196
    • KRYLOV, N. V.1    RÖCKNER, M.2
  • 49
    • 84933553528 scopus 로고    scopus 로고
    • Mean field games via controlled martingale problems: Existence of Markovian equilibria
    • MR3332857
    • LACKER, D. (2015). Mean field games via controlled martingale problems: Existence of Markovian equilibria. Stochastic Process. Appl. 125 2856-2894. MR3332857 https://doi.org/10.1016/j.spa.2015.02.006
    • (2015) Stochastic Process. Appl , vol.125 , pp. 2856-2894
    • LACKER, D.1
  • 50
    • 84936864615 scopus 로고    scopus 로고
    • A general characterization of the mean field limit for stochastic differential games
    • MR3520014
    • LACKER, D. (2016). A general characterization of the mean field limit for stochastic differential games. Probab. Theory Related Fields 165 581-648. MR3520014 https://doi.org/10.1007/s00440-015-0641-9
    • (2016) Probab. Theory Related Fields , vol.165 , pp. 581-648
    • LACKER, D.1
  • 51
    • 85050797319 scopus 로고    scopus 로고
    • On a strong form of propagation of chaos for McKean-Vlasov equations
    • Paper No. MR3841406
    • LACKER, D. (2018). On a strong form of propagation of chaos for McKean-Vlasov equations. Electron. Commun. Probab. 23 Paper No. 45, 11. MR3841406 https://doi.org/10.1214/18-ECP150
    • (2018) Electron. Commun. Probab , vol.23 , Issue.45 , pp. 11
    • LACKER, D.1
  • 52
    • 33750627999 scopus 로고    scopus 로고
    • Jeux à champ moyen. I. Le cas stationnaire
    • MR2269875
    • LASRY, J.-M. and LIONS, P.-L. (2006). Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 619-625. MR2269875 https://doi.org/10.1016/j.crma.2006.09.019
    • (2006) C. R. Math. Acad. Sci. Paris , vol.343 , pp. 619-625
    • LASRY, J.-M.1    LIONS, P.-L.2
  • 53
    • 33751077273 scopus 로고    scopus 로고
    • Jeux à champ moyen. II. Horizon fini et contrôle optimal
    • MR2271747
    • LASRY, J.-M. and LIONS, P.-L. (2006). Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 679-684. MR2271747 https://doi.org/10.1016/j.crma.2006.09.018
    • (2006) C. R. Math. Acad. Sci. Paris , vol.343 , pp. 679-684
    • LASRY, J.-M.1    LIONS, P.-L.2
  • 54
    • 34047127341 scopus 로고    scopus 로고
    • Mean field games
    • MR2295621
    • LASRY, J.-M. and LIONS, P.-L. (2007). Mean field games. Jpn. J. Math. 2 229-260. MR2295621 https://doi.org/10.1007/s11537-007-0657-8
    • (2007) Jpn. J. Math , vol.2 , pp. 229-260
    • LASRY, J.-M.1    LIONS, P.-L.2
  • 55
    • 84905191737 scopus 로고    scopus 로고
    • Measurability of semimartingale characteristics with respect to the probability law
    • MR3249357
    • NEUFELD, A. and NUTZ, M. (2014). Measurability of semimartingale characteristics with respect to the probability law. Stochastic Process. Appl. 124 3819-3845. MR3249357 https://doi.org/10.1016/j.spa.2014.07.006
    • (2014) Stochastic Process. Appl , vol.124 , pp. 3819-3845
    • NEUFELD, A.1    NUTZ, M.2
  • 57
    • 0040554658 scopus 로고
    • A martingale approach to the law of large numbers for weakly interacting stochastic processes
    • MR0735849
    • OELSCHLÄGER, K. (1984). A martingale approach to the law of large numbers for weakly interacting stochastic processes. Ann. Probab. 12 458-479. MR0735849
    • (1984) Ann. Probab , vol.12 , pp. 458-479
    • OELSCHLÄGER, K.1
  • 58
    • 0003522826 scopus 로고    scopus 로고
    • 2nd ed. Stochastic Modelling and Applied Probability 21. Springer, Berlin. Version 2.1, Corrected third printing. MR2273672
    • PROTTER, P. E. (2005). Stochastic Integration and Differential Equations, 2nd ed. Stochastic Modelling and Applied Probability 21. Springer, Berlin. Version 2.1, Corrected third printing. MR2273672 https://doi.org/10.1007/978-3-662-10061-5
    • (2005) Stochastic Integration and Differential Equations
    • PROTTER, P. E.1
  • 59
    • 0009875547 scopus 로고
    • The existence of optimal controls
    • MR0136844
    • ROXIN, E. (1962). The existence of optimal controls. Michigan Math. J. 9 109-119. MR0136844
    • (1962) Michigan Math. J , vol.9 , pp. 109-119
    • ROXIN, E.1
  • 60
    • 0003655416 scopus 로고
    • 2nd ed. Macmillan. MR0151555
    • ROYDEN, H. L. (1968). Real Analysis, 2nd ed. Macmillan. MR0151555
    • (1968) Real Analysis
    • ROYDEN, H. L.1
  • 62
    • 0001105004 scopus 로고
    • Topics in propagation of chaos. In École D'Été de Probabilités de Saint-Flour XIX-1989
    • Lecture Notes in Math. Springer, Berlin. MR1108185
    • SZNITMAN, A.-S. (1991). Topics in propagation of chaos. In École D'Été de Probabilités de Saint-Flour XIX-1989. Lecture Notes in Math. 1464 165-251. Springer, Berlin. MR1108185 https://doi.org/10.1007/BFb0085169
    • (1991) , vol.1464 , pp. 165-251
    • SZNITMAN, A.-S.1
  • 63
    • 84877293036 scopus 로고    scopus 로고
    • Zero noise limits using local times
    • MR3056068
    • TREVISAN, D. (2013). Zero noise limits using local times. Electron. Commun. Probab. 18 no. 31, 7. MR3056068 https://doi.org/10.1214/ECP.v18-2587
    • (2013) Electron. Commun. Probab , vol.18 , Issue.31 , pp. 7
    • TREVISAN, D.1
  • 64
    • 84963861135 scopus 로고    scopus 로고
    • Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients
    • Paper No. MR3485364
    • TREVISAN, D. (2016). Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. 21 Paper No. 22, 41. MR3485364 https://doi.org/10.1214/ 16-EJP4453
    • (2016) Electron. J. Probab , vol.21 , Issue.22 , pp. 41
    • TREVISAN, D.1
  • 65
    • 0000028686 scopus 로고
    • On strong solutions and explicit formulas for solutions of stochastic integral equations
    • VERETENNIKOV, A. Y. (1981). On strong solutions and explicit formulas for solutions of stochastic integral equations. Math. USSR, Sb. 39 387.
    • (1981) Math. USSR, Sb , vol.39 , pp. 387
    • VERETENNIKOV, A. Y.1
  • 66
    • 2442557820 scopus 로고    scopus 로고
    • Topics in Optimal Transportation
    • Amer. Math. Soc., Providence, RI. MR1964483
    • VILLANI, C. (2003). Topics in Optimal Transportation. Graduate Studies in Mathematics 58. Amer. Math. Soc., Providence, RI. MR1964483 https://doi.org/10.1090/gsm/058
    • (2003) Graduate Studies in Mathematics , vol.58
    • VILLANI, C.1
  • 67
    • 0000659593 scopus 로고
    • An introduction to stochastic partial differential equations. In École D'été de Probabilités de Saint-Flour, XIV-1984
    • Lecture Notes in Math. Springer, Berlin. MR0876085
    • WALSH, J. B. (1986). An introduction to stochastic partial differential equations. In École D'été de Probabilités de Saint-Flour, XIV-1984. Lecture Notes in Math. 1180 265-439. Springer, Berlin. MR0876085 https://doi.org/10.1007/BFb0074920
    • (1986) , vol.1180 , pp. 265-439
    • WALSH, J. B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.