메뉴 건너뛰기




Volumn 56, Issue 5, 2018, Pages 3538-3568

Analysis of a finite state many player game using its master equation

Author keywords

Finite state control problem; Fluctuations; Markov chains; Master equation; Mean field games

Indexed keywords

MARKOV PROCESSES;

EID: 85056088593     PISSN: 03630129     EISSN: None     Source Type: Journal    
DOI: 10.1137/17M113887X     Document Type: Article
Times cited : (81)

References (28)
  • 1
    • 85056134261 scopus 로고    scopus 로고
    • A numerical scheme for a mean field game in some queueing systems based on Markov chain approximation method
    • to appear
    • E. Bayraktar, A. Budhiraja, and A. Cohen, A numerical scheme for a mean field game in some queueing systems based on Markov chain approximation method, SIAM J. Control Optim., to appear.
    • SIAM J. Control Optim.
    • Bayraktar, E.1    Budhiraja, A.2    Cohen, A.3
  • 3
    • 84929045034 scopus 로고    scopus 로고
    • The master equation in mean field theory
    • A. Bensoussan, J. Frehse, and S. C. P. Yam, The master equation in mean field theory, J. Math. Pures Appl. (9), 103 (2015), pp. 1441-1474, https://doi.org/10.1016/j.matpur.2014.11.005.
    • (2015) J. Math. Pures Appl. , vol.103 , Issue.9 , pp. 1441-1474
    • Bensoussan, A.1    Frehse, J.2    Yam, S.C.P.3
  • 6
    • 84881309217 scopus 로고    scopus 로고
    • Probabilistic analysis of mean-field games
    • R. Carmona and F. Delarue, Probabilistic analysis of mean-field games, SIAM J. Control Optim., 51 (2013), pp. 2705-2734, https://doi.org/10.1137/120883499.
    • (2013) SIAM J. Control Optim. , vol.51 , pp. 2705-2734
    • Carmona, R.1    Delarue, F.2
  • 9
    • 85043453650 scopus 로고    scopus 로고
    • Probabilistic approach to finite state mean field games
    • A. Cecchin and M. Fischer, Probabilistic approach to finite state mean field games, Appl. Math. Optim., (2018), https://doi.org/10.1007/s00245-018-9488-7.
    • (2018) Appl. Math. Optim.
    • Cecchin, A.1    Fischer, M.2
  • 14
    • 85019652145 scopus 로고    scopus 로고
    • On the connection between symmetric N-player games and mean field games
    • M. Fischer, On the connection between symmetric N-player games and mean field games, Ann. Appl. Probab., 127 (2017), pp. 757-810.
    • (2017) Ann. Appl. Probab. , vol.127 , pp. 757-810
    • Fischer, M.1
  • 17
    • 84880206151 scopus 로고    scopus 로고
    • Continuous time finite state mean field games
    • D. A. Gomes, J. Mohr, and R. R. Souza, Continuous time finite state mean field games, Appl. Math. Optim., 68 (2013), pp. 99-143, https://doi.org/10.1007/s00245-013-9202-8.
    • (2013) Appl. Math. Optim. , vol.68 , pp. 99-143
    • Gomes, D.A.1    Mohr, J.2    Souza, R.R.3
  • 19
    • 39549087376 scopus 로고    scopus 로고
    • Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
    • M. Huang, R. P. Malhamé, and P. E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Com-mun. Inf. Syst., 6 (2006), pp. 221-251.
    • (2006) Com-Mun. Inf. Syst. , vol.6 , pp. 221-251
    • Huang, M.1    Malhamé, R.P.2    Caines, P.E.3
  • 20
    • 0141547655 scopus 로고
    • Limit theorems for stochastic processes
    • Springer-Verlag, Berlin
    • J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss. 288, Springer-Verlag, Berlin, 1987, https://doi.org/10.1007/978-3-662-02514-7.
    • (1987) Grundlehren Math. Wiss. , vol.288
    • Jacod, J.1    Shiryaev, A.N.2
  • 22
    • 84936864615 scopus 로고    scopus 로고
    • A general characterization of the mean field limit for stochastic differential games
    • D. Lacker, A general characterization of the mean field limit for stochastic differential games, Probab. Theory Related Fields, 165 (2016), pp. 581-648.
    • (2016) Probab. Theory Related Fields , vol.165 , pp. 581-648
    • Lacker, D.1
  • 23
    • 85021729169 scopus 로고    scopus 로고
    • Limit theory for controlled McKean-Vlasov dynamics
    • D. Lacker, Limit theory for controlled McKean-Vlasov dynamics, SIAM J. Control Optim., 55 (2017), pp. 1641-1672, https://doi.org/10.1137/16M1095895.
    • (2017) SIAM J. Control Optim. , vol.55 , pp. 1641-1672
    • Lacker, D.1
  • 24
    • 85060027189 scopus 로고    scopus 로고
    • From the master equation to mean field game limits, fluctuations, and large deviations
    • D. Lacker, F. Delarue, and K. Ramanan, From the master equation to mean field game limits, fluctuations, and large deviations, presented at the Financial and Actuarial Seminar at the University of Michigan, 2017, http://www.math.lsa.umich.edu/seminars events/ events detail.php?id=4354.
    • (2017) The Financial and Actuarial Seminar at The University of Michigan
    • Lacker, D.1    Delarue, F.2    Ramanan, K.3
  • 25
    • 33750627999 scopus 로고    scopus 로고
    • Jeux à champ moyen. I. Le cas stationnaire
    • J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), pp. 619-625, https://doi.org/10.1016/j.crma.2006.09.019.
    • (2006) C. R. Math. Acad. Sci. Paris , vol.343 , pp. 619-625
    • Lasry, J.-M.1    Lions, P.-L.2
  • 26
    • 33751077273 scopus 로고    scopus 로고
    • Jeux à champ moyen. II. Horizon fini et contr\^ ole optimal
    • J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contr\^ ole optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), pp. 679-684, https://doi.org/10.1016/j.crma.2006.09.018.
    • (2006) C. R. Math. Acad. Sci. Paris , vol.343 , pp. 679-684
    • Lasry, J.-M.1    Lions, P.-L.2
  • 27
    • 34047127341 scopus 로고    scopus 로고
    • Mean field games
    • J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), pp. 229-260, https://doi.org/10.1007/s11537-007-0657-8.
    • (2007) Jpn. J. Math. , vol.2 , pp. 229-260
    • Lasry, J.-M.1    Lions, P.-L.2
  • 28
    • 32844470231 scopus 로고    scopus 로고
    • Stochastic integration and differential equations
    • Stoch. Model. Appl. Probab.), 2nd ed., Springer-Verlag, Berlin
    • P. E. Protter, Stochastic Integration and Differential Equations, Appl. Math. (N. Y.) 21 (Stoch. Model. Appl. Probab.), 2nd ed., Springer-Verlag, Berlin, 2004.
    • (2004) Appl. Math. (N. Y.) , vol.21
    • Protter, P.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.