-
1
-
-
85056134261
-
A numerical scheme for a mean field game in some queueing systems based on Markov chain approximation method
-
to appear
-
E. Bayraktar, A. Budhiraja, and A. Cohen, A numerical scheme for a mean field game in some queueing systems based on Markov chain approximation method, SIAM J. Control Optim., to appear.
-
SIAM J. Control Optim.
-
-
Bayraktar, E.1
Budhiraja, A.2
Cohen, A.3
-
3
-
-
84929045034
-
The master equation in mean field theory
-
A. Bensoussan, J. Frehse, and S. C. P. Yam, The master equation in mean field theory, J. Math. Pures Appl. (9), 103 (2015), pp. 1441-1474, https://doi.org/10.1016/j.matpur.2014.11.005.
-
(2015)
J. Math. Pures Appl.
, vol.103
, Issue.9
, pp. 1441-1474
-
-
Bensoussan, A.1
Frehse, J.2
Yam, S.C.P.3
-
5
-
-
85072069003
-
-
preprint
-
P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions, The Master Equation and the Convergence Problem in Mean Field Games, preprint, https://arxiv.org/abs/1509.02505,2015.
-
(2015)
The Master Equation and The Convergence Problem in Mean Field Games
-
-
Cardaliaguet, P.1
Delarue, F.2
Lasry, J.-M.3
Lions, P.-L.4
-
6
-
-
84881309217
-
Probabilistic analysis of mean-field games
-
R. Carmona and F. Delarue, Probabilistic analysis of mean-field games, SIAM J. Control Optim., 51 (2013), pp. 2705-2734, https://doi.org/10.1137/120883499.
-
(2013)
SIAM J. Control Optim.
, vol.51
, pp. 2705-2734
-
-
Carmona, R.1
Delarue, F.2
-
7
-
-
84919448149
-
The master equation for large population equilibriums
-
Springer, Cham
-
R. Carmona and F. Delarue, The master equation for large population equilibriums, in Stochastic Analysis and Applications 2014, Springer Proc. Math. Stat. 100, Springer, Cham, 2014, pp. 77-128, https://doi.org/10.1007/978-3-319-11292-3 4.
-
(2014)
Stochastic Analysis and Applications 2014, Springer Proc. Math. Stat.
, vol.100
, pp. 77-128
-
-
Carmona, R.1
Delarue, F.2
-
9
-
-
85043453650
-
Probabilistic approach to finite state mean field games
-
A. Cecchin and M. Fischer, Probabilistic approach to finite state mean field games, Appl. Math. Optim., (2018), https://doi.org/10.1007/s00245-018-9488-7.
-
(2018)
Appl. Math. Optim.
-
-
Cecchin, A.1
Fischer, M.2
-
14
-
-
85019652145
-
On the connection between symmetric N-player games and mean field games
-
M. Fischer, On the connection between symmetric N-player games and mean field games, Ann. Appl. Probab., 127 (2017), pp. 757-810.
-
(2017)
Ann. Appl. Probab.
, vol.127
, pp. 757-810
-
-
Fischer, M.1
-
15
-
-
84988253977
-
Dual two-state mean-field games
-
D. Gomes, R. M. Velho, and M.-T. Wolfram, Dual two-state mean-field games, in Proceedings of the 2014 IEEE 53rd Annual Conference on Decision and Control (CDC), 2014, pp. 2703-2708.
-
(2014)
Proceedings of The 2014 IEEE 53rd Annual Conference on Decision and Control (CDC)
, pp. 2703-2708
-
-
Gomes, D.1
Velho, R.M.2
Wolfram, M.-T.3
-
16
-
-
84907863230
-
Socio-economic applications of finite state mean field games
-
D. Gomes, R. M. Velho, and M.-T. Wolfram, Socio-economic applications of finite state mean field games, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130405.
-
(2014)
Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.372
, pp. 20130405
-
-
Gomes, D.1
Velho, R.M.2
Wolfram, M.-T.3
-
17
-
-
84880206151
-
Continuous time finite state mean field games
-
D. A. Gomes, J. Mohr, and R. R. Souza, Continuous time finite state mean field games, Appl. Math. Optim., 68 (2013), pp. 99-143, https://doi.org/10.1007/s00245-013-9202-8.
-
(2013)
Appl. Math. Optim.
, vol.68
, pp. 99-143
-
-
Gomes, D.A.1
Mohr, J.2
Souza, R.R.3
-
18
-
-
62749196684
-
The Nash certainty equivalence principle and McKean-Vlasov systems: An invariance principle and entry adaptation
-
M. Huang, P. E. Caines, and R. P. Malhamé, The Nash certainty equivalence principle and McKean-Vlasov systems: An invariance principle and entry adaptation, in Proceedings of the 2007 46th IEEE Conference on Decision and Control, 2007, pp. 121-126.
-
(2007)
Proceedings of The 2007 46th IEEE Conference on Decision and Control
, pp. 121-126
-
-
Huang, M.1
Caines, P.E.2
Malhamé, R.P.3
-
19
-
-
39549087376
-
Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
-
M. Huang, R. P. Malhamé, and P. E. Caines, Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Com-mun. Inf. Syst., 6 (2006), pp. 221-251.
-
(2006)
Com-Mun. Inf. Syst.
, vol.6
, pp. 221-251
-
-
Huang, M.1
Malhamé, R.P.2
Caines, P.E.3
-
20
-
-
0141547655
-
Limit theorems for stochastic processes
-
Springer-Verlag, Berlin
-
J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss. 288, Springer-Verlag, Berlin, 1987, https://doi.org/10.1007/978-3-662-02514-7.
-
(1987)
Grundlehren Math. Wiss.
, vol.288
-
-
Jacod, J.1
Shiryaev, A.N.2
-
22
-
-
84936864615
-
A general characterization of the mean field limit for stochastic differential games
-
D. Lacker, A general characterization of the mean field limit for stochastic differential games, Probab. Theory Related Fields, 165 (2016), pp. 581-648.
-
(2016)
Probab. Theory Related Fields
, vol.165
, pp. 581-648
-
-
Lacker, D.1
-
23
-
-
85021729169
-
Limit theory for controlled McKean-Vlasov dynamics
-
D. Lacker, Limit theory for controlled McKean-Vlasov dynamics, SIAM J. Control Optim., 55 (2017), pp. 1641-1672, https://doi.org/10.1137/16M1095895.
-
(2017)
SIAM J. Control Optim.
, vol.55
, pp. 1641-1672
-
-
Lacker, D.1
-
24
-
-
85060027189
-
From the master equation to mean field game limits, fluctuations, and large deviations
-
D. Lacker, F. Delarue, and K. Ramanan, From the master equation to mean field game limits, fluctuations, and large deviations, presented at the Financial and Actuarial Seminar at the University of Michigan, 2017, http://www.math.lsa.umich.edu/seminars events/ events detail.php?id=4354.
-
(2017)
The Financial and Actuarial Seminar at The University of Michigan
-
-
Lacker, D.1
Delarue, F.2
Ramanan, K.3
-
25
-
-
33750627999
-
Jeux à champ moyen. I. Le cas stationnaire
-
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. I. Le cas stationnaire, C. R. Math. Acad. Sci. Paris, 343 (2006), pp. 619-625, https://doi.org/10.1016/j.crma.2006.09.019.
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, pp. 619-625
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
26
-
-
33751077273
-
Jeux à champ moyen. II. Horizon fini et contr\^ ole optimal
-
J.-M. Lasry and P.-L. Lions, Jeux à champ moyen. II. Horizon fini et contr\^ ole optimal, C. R. Math. Acad. Sci. Paris, 343 (2006), pp. 679-684, https://doi.org/10.1016/j.crma.2006.09.018.
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, pp. 679-684
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
27
-
-
34047127341
-
Mean field games
-
J.-M. Lasry and P.-L. Lions, Mean field games, Jpn. J. Math., 2 (2007), pp. 229-260, https://doi.org/10.1007/s11537-007-0657-8.
-
(2007)
Jpn. J. Math.
, vol.2
, pp. 229-260
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
28
-
-
32844470231
-
Stochastic integration and differential equations
-
Stoch. Model. Appl. Probab.), 2nd ed., Springer-Verlag, Berlin
-
P. E. Protter, Stochastic Integration and Differential Equations, Appl. Math. (N. Y.) 21 (Stoch. Model. Appl. Probab.), 2nd ed., Springer-Verlag, Berlin, 2004.
-
(2004)
Appl. Math. (N. Y.)
, vol.21
-
-
Protter, P.E.1
|