메뉴 건너뛰기




Volumn 30, Issue 1, 2020, Pages 259-286

Convergence to the mean field game limit: A case study

Author keywords

Equilibrium; Mean field game; N player game; Optimal stopping

Indexed keywords


EID: 85087560038     PISSN: 10505164     EISSN: None     Source Type: Journal    
DOI: 10.1214/19-AAP1501     Document Type: Article
Times cited : (55)

References (31)
  • 1
    • 84867736231 scopus 로고    scopus 로고
    • The distribution of the product of powers of independent uniform random variables-a simple but useful tool to address and better understand the structure of some distributions
    • MR2984353
    • ARNOLD, B. C., COELHO, C. A. and MARQUES, F. J. (2013). The distribution of the product of powers of independent uniform random variables-a simple but useful tool to address and better understand the structure of some distributions. J. Multivariate Anal. 113 19-36. MR2984353 https://doi.org/10.1016/j.jmva.2011.04.006
    • (2013) J. Multivariate Anal , vol.113 , pp. 19-36
    • ARNOLD, B. C.1    COELHO, C. A.2    MARQUES, F. J.3
  • 2
    • 84865608369 scopus 로고    scopus 로고
    • Explicit solutions of some linear-quadratic mean field games
    • MR2928378
    • BARDI, M. (2012). Explicit solutions of some linear-quadratic mean field games. Netw. Heterog. Media 7 243-261. MR2928378 https://doi.org/10.3934/nhm.2012.7.243
    • (2012) Netw. Heterog. Media , vol.7 , pp. 243-261
    • BARDI, M.1
  • 3
    • 85088964125 scopus 로고    scopus 로고
    • Mean Field Games and Mean Field Type Control Theory
    • Springer Briefs in Mathematics. Springer, New York. MR3134900
    • BENSOUSSAN, A., FREHSE, J. and YAM, P. (2013). Mean Field Games and Mean Field Type Control Theory. Springer Briefs in Mathematics. Springer, New York. MR3134900 https://doi.org/10.1007/978-1-4614-8508-7
    • (2013)
    • BENSOUSSAN, A.1    FREHSE, J.2    YAM, P.3
  • 4
    • 85033380600 scopus 로고    scopus 로고
    • Optimal stopping in mean field games, an obstacle problem approach
    • MR3906158
    • BERTUCCI, C. (2018). Optimal stopping in mean field games, an obstacle problem approach. J. Math. Pures Appl. (9) 120 165-194. MR3906158 https://doi.org/10.1016/j.matpur.2017.09.016
    • (2018) J. Math. Pures Appl , vol.120 , Issue.9 , pp. 165-194
    • BERTUCCI, C.1
  • 6
    • 85037639084 scopus 로고    scopus 로고
    • Stable solutions in potential mean field game systems
    • Art. 1, MR3735559
    • BRIANI, A. and CARDALIAGUET, P. (2018). Stable solutions in potential mean field game systems. NoDEA Nonlinear Differential Equations Appl. 25 Art. 1, 26. MR3735559 https://doi.org/10.1007/s00030-017-0493-3
    • (2018) NoDEA Nonlinear Differential Equations Appl , vol.25 , pp. 26
    • BRIANI, A.1    CARDALIAGUET, P.2
  • 7
    • 84936526568 scopus 로고
    • Multimarket oligopoly: Strategic substitutes and complements
    • BULOW, J. I., GEANAKOPLOS, J. D. and KLEMPERER, P. D. (1985). Multimarket oligopoly: Strategic substitutes and complements. J. Polit. Econ. 93 488-511.
    • (1985) J. Polit. Econ , vol.93 , pp. 488-511
    • BULOW, J. I.1    GEANAKOPLOS, J. D.2    KLEMPERER, P. D.3
  • 8
    • 85052719010 scopus 로고    scopus 로고
    • N-player games and mean-field games with absorption
    • MR3843827
    • CAMPI, L. and FISCHER, M. (2018). N-player games and mean-field games with absorption. Ann. Appl. Probab. 28 2188-2242. MR3843827 https://doi.org/10.1214/17-AAP1354
    • (2018) Ann. Appl. Probab , vol.28 , pp. 2188-2242
    • CAMPI, L.1    FISCHER, M.2
  • 9
    • 85068762191 scopus 로고    scopus 로고
    • (from P.-L. Lions lectures at Collège de France)
    • CARDALIAGUET, P. (2013). Notes on mean field games (from P.-L. Lions' lectures at Collège de France).
    • (2013) Notes on mean field games
    • CARDALIAGUET, P.1
  • 12
    • 85130936362 scopus 로고    scopus 로고
    • Probabilistic Theory of Mean Field Games with Applications. II: Mean Field Games with Common Noise and Master Equations
    • Springer, Cham. MR3753660
    • CARMONA, R. and DELARUE, F. (2018). Probabilistic Theory of Mean Field Games with Applications. II: Mean Field Games with Common Noise and Master Equations. Probability Theory and Stochastic Modelling 84. Springer, Cham. MR3753660
    • (2018) Probability Theory and Stochastic Modelling , vol.84
    • CARMONA, R.1    DELARUE, F.2
  • 13
    • 85021710985 scopus 로고    scopus 로고
    • Mean field games of timing and models for bank runs
    • MR3679343
    • CARMONA, R., DELARUE, F. and LACKER, D. (2017). Mean field games of timing and models for bank runs. Appl. Math. Optim. 76 217-260. MR3679343 https://doi.org/10.1007/s00245-017-9435-z
    • (2017) Appl. Math. Optim , vol.76 , pp. 217-260
    • CARMONA, R.1    DELARUE, F.2    LACKER, D.3
  • 15
    • 85043453650 scopus 로고    scopus 로고
    • Probabilistic approach to finite state mean field games
    • To appear
    • CECCHIN, A. and FISCHER, M. (2018). Probabilistic approach to finite state mean field games. Appl. Math. Optim. To appear.
    • (2018) Appl. Math. Optim
    • CECCHIN, A.1    FISCHER, M.2
  • 17
    • 85010390101 scopus 로고
    • Bank runs, deposit insurance, and liquidity
    • DIAMOND, D. W. and DYBVIG, P. H. (1983). Bank runs, deposit insurance, and liquidity. J. Polit. Econ. 91 401-419.
    • (1983) J. Polit. Econ , vol.91 , pp. 401-419
    • DIAMOND, D. W.1    DYBVIG, P. H.2
  • 18
    • 85019652145 scopus 로고    scopus 로고
    • On the connection between symmetric N-player games and mean field games
    • MR3655853
    • FISCHER, M. (2017). On the connection between symmetric N-player games and mean field games. Ann. Appl. Probab. 27 757-810. MR3655853 https://doi.org/10.1214/16-AAP1215
    • (2017) Ann. Appl. Probab , vol.27 , pp. 757-810
    • FISCHER, M.1
  • 19
    • 34648831837 scopus 로고    scopus 로고
    • Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ∈-Nash equilibria
    • MR2352434
    • HUANG, M., CAINES, P. E. and MALHAMÉ, R. P. (2007). Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ∈-Nash equilibria. IEEE Trans. Automat. Control 52 1560-1571. MR2352434 https://doi.org/10.1109/TAC.2007.904450
    • (2007) IEEE Trans. Automat. Control , vol.52 , pp. 1560-1571
    • HUANG, M.1    CAINES, P. E.2    MALHAMÉ, R. P.3
  • 20
    • 39549087376 scopus 로고    scopus 로고
    • Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
    • MR2346927
    • HUANG, M., MALHAMÉ, R. P. and CAINES, P. E. (2006). Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 221-251. MR2346927
    • (2006) Commun. Inf. Syst , vol.6 , pp. 221-251
    • HUANG, M.1    MALHAMÉ, R. P.2    CAINES, P. E.3
  • 21
    • 0040153406 scopus 로고    scopus 로고
    • Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets
    • MR1402653
    • KRAMKOV, D. O. (1996). Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probab. Theory Related Fields 105 459-479. MR1402653 https://doi.org/10.1007/BF01191909
    • (1996) Probab. Theory Related Fields , vol.105 , pp. 459-479
    • KRAMKOV, D. O.1
  • 22
    • 84936864615 scopus 로고    scopus 로고
    • A general characterization of the mean field limit for stochastic differential games
    • MR3520014
    • LACKER, D. (2016). A general characterization of the mean field limit for stochastic differential games. Probab. Theory Related Fields 165 581-648. MR3520014 https://doi.org/10.1007/s00440-015-0641-9
    • (2016) Probab. Theory Related Fields , vol.165 , pp. 581-648
    • LACKER, D.1
  • 24
    • 33750627999 scopus 로고    scopus 로고
    • Jeux à champ moyen. I. Le cas stationnaire
    • MR2269875
    • LASRY, J.-M. and LIONS, P.-L. (2006). Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 619-625. MR2269875 https://doi.org/10.1016/j.crma.2006.09.019
    • (2006) C. R. Math. Acad. Sci. Paris , vol.343 , pp. 619-625
    • LASRY, J.-M.1    LIONS, P.-L.2
  • 25
    • 33751077273 scopus 로고    scopus 로고
    • Jeux à champ moyen. II. Horizon fini et contrôle optimal
    • MR2271747
    • LASRY, J.-M. and LIONS, P.-L. (2006). Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 679-684. MR2271747 https://doi.org/10.1016/j.crma.2006.09.018
    • (2006) C. R. Math. Acad. Sci. Paris , vol.343 , pp. 679-684
    • LASRY, J.-M.1    LIONS, P.-L.2
  • 26
    • 34047127341 scopus 로고    scopus 로고
    • Mean field games
    • MR2295621
    • LASRY, J.-M. and LIONS, P.-L. (2007). Mean field games. Jpn. J. Math. 2 229-260. MR2295621 https://doi.org/10.1007/s11537-007-0657-8
    • (2007) Jpn. J. Math , vol.2 , pp. 229-260
    • LASRY, J.-M.1    LIONS, P.-L.2
  • 27
    • 0041140851 scopus 로고
    • On the number of crossings of empirical distribution functions
    • MR0841590
    • NAIR, V. N., SHEPP, L. A. and KLASS, M. J. (1986). On the number of crossings of empirical distribution functions. Ann. Probab. 14 877-890. MR0841590
    • (1986) Ann. Probab , vol.14 , pp. 877-890
    • NAIR, V. N.1    SHEPP, L. A.2    KLASS, M. J.3
  • 28
    • 85047193239 scopus 로고    scopus 로고
    • A mean field game of optimal stopping
    • MR3780736
    • NUTZ, M. (2018). A mean field game of optimal stopping. SIAM J. Control Optim. 56 1206-1221. MR3780736 https://doi.org/10.1137/16M1078331
    • (2018) SIAM J. Control Optim , vol.56 , pp. 1206-1221
    • NUTZ, M.1
  • 29
    • 85085061586 scopus 로고    scopus 로고
    • A mean field competition
    • To appear
    • NUTZ, M. and ZHANG, Y. (2017). A mean field competition. Math. Oper. Res. To appear.
    • (2017) Math. Oper. Res
    • NUTZ, M.1    ZHANG, Y.2
  • 30
    • 0002470563 scopus 로고
    • A remark on Stirling's formula
    • MR0069328
    • ROBBINS, H. (1955). A remark on Stirling's formula. Amer. Math. Monthly 62 26-29. MR0069328 https://doi.org/10.2307/2308012
    • (1955) Amer. Math. Monthly , vol.62 , pp. 26-29
    • ROBBINS, H.1
  • 31
    • 0036103203 scopus 로고    scopus 로고
    • A filtered version of the bipolar theorem of Brannath and Schachermayer
    • MR1883202
    • ŽITKOVIĆ, G. (2002). A filtered version of the bipolar theorem of Brannath and Schachermayer. J. Theoret. Probab. 15 41-61. MR1883202 https://doi.org/10.1023/A:1013885121598
    • (2002) J. Theoret. Probab , vol.15 , pp. 41-61
    • ŽITKOVIĆ, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.