-
1
-
-
84867736231
-
The distribution of the product of powers of independent uniform random variables-a simple but useful tool to address and better understand the structure of some distributions
-
MR2984353
-
ARNOLD, B. C., COELHO, C. A. and MARQUES, F. J. (2013). The distribution of the product of powers of independent uniform random variables-a simple but useful tool to address and better understand the structure of some distributions. J. Multivariate Anal. 113 19-36. MR2984353 https://doi.org/10.1016/j.jmva.2011.04.006
-
(2013)
J. Multivariate Anal
, vol.113
, pp. 19-36
-
-
ARNOLD, B. C.1
COELHO, C. A.2
MARQUES, F. J.3
-
2
-
-
84865608369
-
Explicit solutions of some linear-quadratic mean field games
-
MR2928378
-
BARDI, M. (2012). Explicit solutions of some linear-quadratic mean field games. Netw. Heterog. Media 7 243-261. MR2928378 https://doi.org/10.3934/nhm.2012.7.243
-
(2012)
Netw. Heterog. Media
, vol.7
, pp. 243-261
-
-
BARDI, M.1
-
3
-
-
85088964125
-
Mean Field Games and Mean Field Type Control Theory
-
Springer Briefs in Mathematics. Springer, New York. MR3134900
-
BENSOUSSAN, A., FREHSE, J. and YAM, P. (2013). Mean Field Games and Mean Field Type Control Theory. Springer Briefs in Mathematics. Springer, New York. MR3134900 https://doi.org/10.1007/978-1-4614-8508-7
-
(2013)
-
-
BENSOUSSAN, A.1
FREHSE, J.2
YAM, P.3
-
4
-
-
85033380600
-
Optimal stopping in mean field games, an obstacle problem approach
-
MR3906158
-
BERTUCCI, C. (2018). Optimal stopping in mean field games, an obstacle problem approach. J. Math. Pures Appl. (9) 120 165-194. MR3906158 https://doi.org/10.1016/j.matpur.2017.09.016
-
(2018)
J. Math. Pures Appl
, vol.120
, Issue.9
, pp. 165-194
-
-
BERTUCCI, C.1
-
6
-
-
85037639084
-
Stable solutions in potential mean field game systems
-
Art. 1, MR3735559
-
BRIANI, A. and CARDALIAGUET, P. (2018). Stable solutions in potential mean field game systems. NoDEA Nonlinear Differential Equations Appl. 25 Art. 1, 26. MR3735559 https://doi.org/10.1007/s00030-017-0493-3
-
(2018)
NoDEA Nonlinear Differential Equations Appl
, vol.25
, pp. 26
-
-
BRIANI, A.1
CARDALIAGUET, P.2
-
7
-
-
84936526568
-
Multimarket oligopoly: Strategic substitutes and complements
-
BULOW, J. I., GEANAKOPLOS, J. D. and KLEMPERER, P. D. (1985). Multimarket oligopoly: Strategic substitutes and complements. J. Polit. Econ. 93 488-511.
-
(1985)
J. Polit. Econ
, vol.93
, pp. 488-511
-
-
BULOW, J. I.1
GEANAKOPLOS, J. D.2
KLEMPERER, P. D.3
-
8
-
-
85052719010
-
N-player games and mean-field games with absorption
-
MR3843827
-
CAMPI, L. and FISCHER, M. (2018). N-player games and mean-field games with absorption. Ann. Appl. Probab. 28 2188-2242. MR3843827 https://doi.org/10.1214/17-AAP1354
-
(2018)
Ann. Appl. Probab
, vol.28
, pp. 2188-2242
-
-
CAMPI, L.1
FISCHER, M.2
-
9
-
-
85068762191
-
-
(from P.-L. Lions lectures at Collège de France)
-
CARDALIAGUET, P. (2013). Notes on mean field games (from P.-L. Lions' lectures at Collège de France).
-
(2013)
Notes on mean field games
-
-
CARDALIAGUET, P.1
-
10
-
-
85061119220
-
The Master Equation and the Convergence Problem in Mean Field Games
-
Princeton Univ. Press
-
CARDALIAGUET, P., DELARUE, F., LASRY, J. M. and LIONS, P. L. (2019). The Master Equation and the Convergence Problem in Mean Field Games. Annals of Mathematics Studies 381. Princeton Univ. Press.
-
(2019)
Annals of Mathematics Studies
, vol.381
-
-
CARDALIAGUET, P.1
DELARUE, F.2
LASRY, J. M.3
LIONS, P. L.4
-
12
-
-
85130936362
-
Probabilistic Theory of Mean Field Games with Applications. II: Mean Field Games with Common Noise and Master Equations
-
Springer, Cham. MR3753660
-
CARMONA, R. and DELARUE, F. (2018). Probabilistic Theory of Mean Field Games with Applications. II: Mean Field Games with Common Noise and Master Equations. Probability Theory and Stochastic Modelling 84. Springer, Cham. MR3753660
-
(2018)
Probability Theory and Stochastic Modelling
, vol.84
-
-
CARMONA, R.1
DELARUE, F.2
-
13
-
-
85021710985
-
Mean field games of timing and models for bank runs
-
MR3679343
-
CARMONA, R., DELARUE, F. and LACKER, D. (2017). Mean field games of timing and models for bank runs. Appl. Math. Optim. 76 217-260. MR3679343 https://doi.org/10.1007/s00245-017-9435-z
-
(2017)
Appl. Math. Optim
, vol.76
, pp. 217-260
-
-
CARMONA, R.1
DELARUE, F.2
LACKER, D.3
-
14
-
-
85071908390
-
-
Preprint, arXiv:1810.05492v1
-
CECCHIN, A., DAI PRA, P., FISCHER, M. and PELINO, G. (2018). On the convergence problem in mean field games: A two state model without uniqueness. Preprint, arXiv:1810.05492v1.
-
(2018)
On the convergence problem in mean field games: A two state model without uniqueness
-
-
CECCHIN, A.1
DAI PRA, P.2
FISCHER, M.3
PELINO, G.4
-
15
-
-
85043453650
-
Probabilistic approach to finite state mean field games
-
To appear
-
CECCHIN, A. and FISCHER, M. (2018). Probabilistic approach to finite state mean field games. Appl. Math. Optim. To appear.
-
(2018)
Appl. Math. Optim
-
-
CECCHIN, A.1
FISCHER, M.2
-
17
-
-
85010390101
-
Bank runs, deposit insurance, and liquidity
-
DIAMOND, D. W. and DYBVIG, P. H. (1983). Bank runs, deposit insurance, and liquidity. J. Polit. Econ. 91 401-419.
-
(1983)
J. Polit. Econ
, vol.91
, pp. 401-419
-
-
DIAMOND, D. W.1
DYBVIG, P. H.2
-
18
-
-
85019652145
-
On the connection between symmetric N-player games and mean field games
-
MR3655853
-
FISCHER, M. (2017). On the connection between symmetric N-player games and mean field games. Ann. Appl. Probab. 27 757-810. MR3655853 https://doi.org/10.1214/16-AAP1215
-
(2017)
Ann. Appl. Probab
, vol.27
, pp. 757-810
-
-
FISCHER, M.1
-
19
-
-
34648831837
-
Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ∈-Nash equilibria
-
MR2352434
-
HUANG, M., CAINES, P. E. and MALHAMÉ, R. P. (2007). Large-population cost-coupled LQG problems with nonuniform agents: Individual-mass behavior and decentralized ∈-Nash equilibria. IEEE Trans. Automat. Control 52 1560-1571. MR2352434 https://doi.org/10.1109/TAC.2007.904450
-
(2007)
IEEE Trans. Automat. Control
, vol.52
, pp. 1560-1571
-
-
HUANG, M.1
CAINES, P. E.2
MALHAMÉ, R. P.3
-
20
-
-
39549087376
-
Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle
-
MR2346927
-
HUANG, M., MALHAMÉ, R. P. and CAINES, P. E. (2006). Large population stochastic dynamic games: Closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle. Commun. Inf. Syst. 6 221-251. MR2346927
-
(2006)
Commun. Inf. Syst
, vol.6
, pp. 221-251
-
-
HUANG, M.1
MALHAMÉ, R. P.2
CAINES, P. E.3
-
21
-
-
0040153406
-
Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets
-
MR1402653
-
KRAMKOV, D. O. (1996). Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probab. Theory Related Fields 105 459-479. MR1402653 https://doi.org/10.1007/BF01191909
-
(1996)
Probab. Theory Related Fields
, vol.105
, pp. 459-479
-
-
KRAMKOV, D. O.1
-
22
-
-
84936864615
-
A general characterization of the mean field limit for stochastic differential games
-
MR3520014
-
LACKER, D. (2016). A general characterization of the mean field limit for stochastic differential games. Probab. Theory Related Fields 165 581-648. MR3520014 https://doi.org/10.1007/s00440-015-0641-9
-
(2016)
Probab. Theory Related Fields
, vol.165
, pp. 581-648
-
-
LACKER, D.1
-
24
-
-
33750627999
-
Jeux à champ moyen. I. Le cas stationnaire
-
MR2269875
-
LASRY, J.-M. and LIONS, P.-L. (2006). Jeux à champ moyen. I. Le cas stationnaire. C. R. Math. Acad. Sci. Paris 343 619-625. MR2269875 https://doi.org/10.1016/j.crma.2006.09.019
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, pp. 619-625
-
-
LASRY, J.-M.1
LIONS, P.-L.2
-
25
-
-
33751077273
-
Jeux à champ moyen. II. Horizon fini et contrôle optimal
-
MR2271747
-
LASRY, J.-M. and LIONS, P.-L. (2006). Jeux à champ moyen. II. Horizon fini et contrôle optimal. C. R. Math. Acad. Sci. Paris 343 679-684. MR2271747 https://doi.org/10.1016/j.crma.2006.09.018
-
(2006)
C. R. Math. Acad. Sci. Paris
, vol.343
, pp. 679-684
-
-
LASRY, J.-M.1
LIONS, P.-L.2
-
26
-
-
34047127341
-
Mean field games
-
MR2295621
-
LASRY, J.-M. and LIONS, P.-L. (2007). Mean field games. Jpn. J. Math. 2 229-260. MR2295621 https://doi.org/10.1007/s11537-007-0657-8
-
(2007)
Jpn. J. Math
, vol.2
, pp. 229-260
-
-
LASRY, J.-M.1
LIONS, P.-L.2
-
27
-
-
0041140851
-
On the number of crossings of empirical distribution functions
-
MR0841590
-
NAIR, V. N., SHEPP, L. A. and KLASS, M. J. (1986). On the number of crossings of empirical distribution functions. Ann. Probab. 14 877-890. MR0841590
-
(1986)
Ann. Probab
, vol.14
, pp. 877-890
-
-
NAIR, V. N.1
SHEPP, L. A.2
KLASS, M. J.3
-
28
-
-
85047193239
-
A mean field game of optimal stopping
-
MR3780736
-
NUTZ, M. (2018). A mean field game of optimal stopping. SIAM J. Control Optim. 56 1206-1221. MR3780736 https://doi.org/10.1137/16M1078331
-
(2018)
SIAM J. Control Optim
, vol.56
, pp. 1206-1221
-
-
NUTZ, M.1
-
29
-
-
85085061586
-
A mean field competition
-
To appear
-
NUTZ, M. and ZHANG, Y. (2017). A mean field competition. Math. Oper. Res. To appear.
-
(2017)
Math. Oper. Res
-
-
NUTZ, M.1
ZHANG, Y.2
-
30
-
-
0002470563
-
A remark on Stirling's formula
-
MR0069328
-
ROBBINS, H. (1955). A remark on Stirling's formula. Amer. Math. Monthly 62 26-29. MR0069328 https://doi.org/10.2307/2308012
-
(1955)
Amer. Math. Monthly
, vol.62
, pp. 26-29
-
-
ROBBINS, H.1
-
31
-
-
0036103203
-
A filtered version of the bipolar theorem of Brannath and Schachermayer
-
MR1883202
-
ŽITKOVIĆ, G. (2002). A filtered version of the bipolar theorem of Brannath and Schachermayer. J. Theoret. Probab. 15 41-61. MR1883202 https://doi.org/10.1023/A:1013885121598
-
(2002)
J. Theoret. Probab
, vol.15
, pp. 41-61
-
-
ŽITKOVIĆ, G.1
|