-
1
-
-
85056088593
-
Analysis of a finite state many player game using its master equation
-
MR3860894
-
Bayraktar, E. and Cohen, A. (2018). Analysis of a finite state many player game using its master equation. SIAM J. Control Optim. 56 3538-3568. MR3860894 https://doi.org/10.1137/17M113887X
-
(2018)
SIAM J. Control Optim
, vol.56
, pp. 3538-3568
-
-
Bayraktar, E.1
Cohen, A.2
-
2
-
-
0003024428
-
Méthode de Laplace: étude variationnelle des fluctuations de diffusions de type "champ moyen"
-
MR1080535
-
Ben Arous, G. and Brunaud, M. (1990). Méthode de Laplace: étude variationnelle des fluctuations de diffusions de type "champ moyen". Stoch. Stoch. Rep. 31 79-144. MR1080535 https://doi.org/10.1080/03610919008833649
-
(1990)
Stoch. Stoch. Rep
, vol.31
, pp. 79-144
-
-
Ben Arous, G.1
Brunaud, M.2
-
4
-
-
84929045034
-
The master equation in mean field theory
-
MR3343705
-
Bensoussan, A., Frehse, J. and Yam, S. C. P. (2015). The master equation in mean field theory. J. Math. Pures Appl.(9) 103 1441-1474. MR3343705 https://doi.org/10.10167j.matpur.2014.11.005
-
(2015)
J. Math. Pures. Appl
, vol.9
, Issue.103
, pp. 1441-1474
-
-
Bensoussan, A.1
Frehse, J.2
Yam, S.C.P.3
-
5
-
-
85018981679
-
On the interpretation of the Master Equation
-
MR3652408
-
Bensoussan, A., Frehse, J. and Yam, S. C. P. (2017). On the interpretation of the Master Equation. Stochastic Process. Appl. 127 2093-2137. MR3652408 https://doi.org/10.1016/jj.spa.2016.10.004
-
(2017)
Stochastic Process. Appl
, vol.127
, pp. 2093-2137
-
-
Bensoussan, A.1
Frehse, J.2
Yam, S.C.P.3
-
6
-
-
0002829137
-
Exponential integrability and transportation cost related to logarithmic Sobolev inequalities
-
MR1682772
-
Bobkov, S. G. and Götze, F. (1999). Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 1-28. MR1682772 https://doi.org/10.1006/jfan.1998.3326
-
(1999)
J. Funct. Anal
, vol.163
, pp. 1-28
-
-
Bobkov, S.G.1
Götze, F.2
-
7
-
-
77956719419
-
Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation
-
MR2731396
-
Bolley, F., Guillin, A. and Malrieu, F. (2010). Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. ESAIM Math. Model. Numer. Anal. 44 867884. MR2731396 https://doi.org/10.1051/m2an/2010045
-
(2010)
ESAIM Math. Model. Numer. Anal
, vol.44
, pp. 867-884
-
-
Bolley, F.1
Guillin, A.2
Malrieu, F.3
-
8
-
-
33845889473
-
Quantitative concentration inequalities for empirical measures on non-compact spaces
-
MR2280433
-
BOLLEY, F., GUILLIN, A. and VILLANI, C. (2007). Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Related Fields 137 541-593. MR2280433 https://doi.org/10.1007/s00440-006-0004-7
-
(2007)
Probab. Theory Related Fields
, vol.137
, pp. 541-593
-
-
Bolley, F.1
Guillin, A.2
Villani, C.3
-
9
-
-
84865069712
-
Large deviation properties of weakly interacting processes via weak convergence methods
-
MR2917767
-
Budhiraja, A., Dupuis, P. and FISCHER, M. (2012). Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40 74-102. MR2917767 https://doi.org/10.1214/10-AOP616
-
(2012)
Ann. Probab
, vol.40
, pp. 74-102
-
-
Budhiraja, A.1
Dupuis, P.2
Fischer, M.3
-
10
-
-
85061119220
-
-
12 Princeton Univ. Press
-
Cardaliaguet, P., Delarue, F., Lasry, J.-M. and LIONS, P.-L. (2019) The Master Equation and the Convergence Problem in Mean Field Games. Annals of Mathematics Studies 12 Princeton Univ. Press.
-
(2019)
The Master Equation and the Convergence Problem in Mean Field Games. Annals of Mathematics Studies
-
-
Cardaliaguet, P.1
Delarue, F.2
Lasry, J.-M.3
Lions, P.-L.4
-
11
-
-
84919448149
-
The master equation for large population equilibriums. In Stochastic Analysis and Applications 2014
-
Springer, Cham. MR3332710
-
Carmona, R. and Delarue, F. (2014). The master equation for large population equilibriums. In Stochastic Analysis and Applications 2014. Springer Proc. Math. Stat. 100 77-128. Springer, Cham. MR3332710 https://doi.org/10.1007/978-3-319-11292-3_4
-
(2014)
Springer Proc. Math. Stat
, vol.100
, pp. 77-128
-
-
Carmona, R.1
Delarue, F.2
-
12
-
-
85021744328
-
-
Springer, Berlin
-
Carmona, R. and DELARUE, F. (2017). Probabilistic Theory of Mean Field Games: Vol. /, Mean Field FBSDEs, Control, and Games. Stochastic Analysis and Applications, Springer, Berlin.
-
(2017)
Probabilistic Theory of Mean Field Games: Mean Field FBSDEs, Control, and Games. Stochastic Analysis and Applications
-
-
Carmona, R.1
Delarue, F.2
-
14
-
-
84930019381
-
Mean field games and systemic risk
-
MR3325083
-
Carmona, R., Fouque, J.-P. and SUN, L.-H. (2015). Mean field games and systemic risk. Commun. Math. Sci. 13 911-933. MR3325083 https://doi.org/10.4310/CMS.2015.v13.n4.a4
-
(2015)
Commun. Math. Sci
, vol.13
, pp. 911-933
-
-
Carmona, R.1
Fouque, J.-P.2
Sun, L.-H.3
-
15
-
-
84979084054
-
A probabilistic approach to mean field games with major and minor players. Ann
-
MR3513598
-
Carmona, R. and Zhu, X. (2016). A probabilistic approach to mean field games with major and minor players. Ann. Appl. Probab. 26 1535-1580. MR3513598 https://doi.org/10.1214/15-AAP1125
-
(2016)
Appl. Probab
, vol.26
, pp. 1535-1580
-
-
Carmona, R.1
Zhu, X.2
-
17
-
-
85058804507
-
Convergence, fluctuations and large deviations for finite state mean field games via the master equation
-
Cecchin, A. and PELINO, G. (2019). Convergence, fluctuations and large deviations for finite state mean field games via the master equation. Stochastic Process. Appl. 129 4510-4555.
-
(2019)
Stochastic Process. Appl
, vol.129
, pp. 4510-4555
-
-
Cecchin, A.1
Pelino, G.2
-
19
-
-
0001356070
-
Large deviations from the McKean-Vlasov limit for weakly interacting diffusions
-
MR0885876
-
Dawson, D.A. and GÄRTNER, J. (1987). Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20 247-308. MR0885876 https://doi.org/10.1080/17442508708833446
-
(1987)
Stochastics
, vol.20
, pp. 247-308
-
-
Dawson, D.A.1
Gärtner, J.2
-
20
-
-
85072069003
-
From the master equation to mean field game limit theory: A central limit theorem
-
Delarue, F., Lacker, D. and RAMANAN, K. (2018). From the master equation to mean field game limit theory: A central limit theorem. Electron. J. Probab. 24 1-54.
-
(2018)
Electron. J. Probab
, vol.24
, pp. 1-54
-
-
Delarue, F.1
Lacker, D.2
Ramanan, K.3
-
22
-
-
4544338134
-
Transportation cost-information inequalities and applications to random dynamical systems and diffusions
-
MR2078555
-
Djellout, H., GUILLIN, A. and Wu, L. (2004). Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab. 32 2702-2732. MR2078555 https://doi.org/10.1214/009117904000000531
-
(2004)
Ann. Probab
, vol.32
, pp. 2702-2732
-
-
Djellout, H.1
Guillin, A.2
Wu, L.3
-
23
-
-
84907440986
-
On the form of the large deviation rate function for the empirical measures of weakly interacting systems
-
MR3263089
-
FISCHER, M. (2014). On the form of the large deviation rate function for the empirical measures of weakly interacting systems. Bernoulli 20 1765-1801. MR3263089 https://doi.org/10.3150/13-BEJ540
-
(2014)
Bernoulli
, vol.20
, pp. 1765-1801
-
-
Fischer, M.1
-
24
-
-
85019652145
-
On the connection between symmetric N-player games and mean field games. Ann
-
MR3655853
-
FISCHER, M. (2017). On the connection between symmetric N-player games and mean field games. Ann. Appl. Probab. 27 757-810. MR3655853 https://doi.org/10.1214/16-AAP1215
-
(2017)
Appl. Probab
, vol.27
, pp. 757-810
-
-
Fischer, M.1
-
25
-
-
84939257541
-
On the rate of convergence in Wasserstein distance of the empirical measure
-
MR3383341
-
F0URNIER, N. and GUILLIN, A. (2015). On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 707-738. MR3383341 https://doi.org/10.1007/s00440-014-0583-7
-
(2015)
Probab. Theory Related Fields
, vol.162
, pp. 707-738
-
-
Fournier, N.1
Guillin, A.2
-
26
-
-
84941797484
-
Existence of a solution to an equation arising from the theory of mean field games
-
MR3397332
-
Gangbo, W. and SwiECH, A. (2015). Existence of a solution to an equation arising from the theory of mean field games. J. Differential Equations 259 6573-6643. MR3397332 https://doi.org/10.1016Zj.jde.2015.08.001
-
(2015)
J. Differential Equations
, vol.259
, pp. 6573-6643
-
-
Gangbo, W.1
SwiEch, A.2
-
27
-
-
77049099356
-
A characterization of dimension free concentration in terms of transportation inequalities. Ann
-
MR2573565
-
GOZLAN, N. (2009). A characterization of dimension free concentration in terms of transportation inequalities. Ann. Probab. 37 2480-2498. MR2573565 https://doi.org/10.1214/09-A0P470
-
(2009)
Probab
, vol.37
, pp. 2480-2498
-
-
Gozlan, N.1
-
29
-
-
43949158720
-
Mean rates of convergence of empirical measures in the Wasserstein metric
-
MR1329874
-
H0R0WITZ, J. and Karandikar, R. L. (1994). Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math. 55 261-273. MR1329874 https://doi.org/10.1016/0377-0427(94)90033-7
-
(1994)
J. Comput. Appl. Math
, vol.55
, pp. 261-273
-
-
Horowitz, J.1
Karandikar, R.L.2
-
30
-
-
84936864615
-
A general characterization of the mean field limit for stochastic differential games
-
MR3520014
-
LACKER, D. (2016). A general characterization of the mean field limit for stochastic differential games. Probab. Theory Related Fields 165 581-648. MR3520014 https://doi.org/10.1007/s00440-015-0641-9
-
(2016)
Probab. Theory Related Fields
, vol.165
, pp. 581-648
-
-
Lacker, D.1
-
31
-
-
85068560378
-
Rare Nash equilibria and the price of anarchy in large static games
-
Lacker, D. andRAMANAN, K. (2019). Rare Nash equilibria and the price of anarchy in large static games. Math. Oper. Res. 44 400-422.
-
(2019)
Math. Oper. Res
, vol.44
, pp. 400-422
-
-
Lacker, D.1
Ramanan, K.2
-
33
-
-
34047127341
-
Mean field games
-
MR2295621
-
Lasry, J.-M. and Lions, P.-L. (2007). Mean field games. Jpn. J. Math. 2 229-260. MR2295621 https://doi.org/10.1007/s11537-007-0657-8
-
(2007)
Jpn. J. Math
, vol.2
, pp. 229-260
-
-
Lasry, J.-M.1
Lions, P.-L.2
-
35
-
-
70949085043
-
A note on the differentiability of conjugate functions
-
MR2563594
-
Strömberg, T. (2009). A note on the differentiability of conjugate functions. Arch. Math.(Basel) 93 481-485. MR2563594 https://doi.org/10.1007/s00013-009-0050-3
-
(2009)
Arch. Math.(Basel)
, vol.93
, pp. 481-485
-
-
Strömberg, T.1
-
36
-
-
0000395295
-
On the support of diffusion processes with applications to the strong maximum principle
-
(Univ. California, Berkeley, Calif., 1970/1971), Probability theory Univ. California Press, Berkeley, CA. MR0400425
-
Stroock, D.W. and Varadhan, S. R. S. (1972). On the support of diffusion processes with applications to the strong maximum principle. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory Univ. California Press, Berkeley, CA. 333-359. MR0400425
-
(1972)
In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability
, vol.3
, pp. 333-359
-
-
Stroock, D.W.1
Varadhan, S.R.S.2
-
37
-
-
0001105004
-
Topics in propagation of chaos. In École D'Été de Probabilités de Saint-Flour XIX-1989
-
Springer, Berlin. MR1108185
-
Sznitman, A.-S. (1991). Topics in propagation of chaos. In École D'Été de Probabilités de Saint-Flour XIX-1989. Lecture Notes in Math. 1464 165-251. Springer, Berlin. MR1108185 https://doi.org/10.1007/BFb0085169
-
(1991)
Lecture Notes in Math
, vol.1464
, pp. 165-251
-
-
Sznitman, A.-S.1
-
38
-
-
84893563431
-
Transportation cost inequalities for diffusions under uniform distance
-
Springer, Heidelberg. MR3236093
-
Üstünel, A. S. (2012). Transportation cost inequalities for diffusions under uniform distance. In Stochastic Analysis and Related Topics. Springer Proc. Math. Stat. 22 203-214. Springer, Heidelberg. MR3236093 https://doi.org/10.1007/978-3-642-29982-7_9
-
(2012)
Stochastic Analysis and Related Topics. Springer Proc. Math. Stat
, vol.22
, pp. 203-214
-
-
Üstünel, A.S.1
-
39
-
-
74849133400
-
Sanov's theorem in the Wasserstein distance: A necessary and sufficient condition
-
MR2593592
-
Wang, R., Wang, X. and Wu, L. (2010). Sanov's theorem in the Wasserstein distance: A necessary and sufficient condition. Statist. Probab. Lett. 80 505-512. MR2593592 https://doi.org/10.1016/j.spl.2009.12.003
-
(2010)
Statist. Probab. Lett
, vol.80
, pp. 505-512
-
-
Wang, R.1
Wang, X.2
Wu, L.3
|