메뉴 건너뛰기




Volumn 48, Issue 1, 2020, Pages 211-263

From the master equation to mean field game limit theory: Large deviations and concentration of measure

Author keywords

Common noise; Concentration of measure; Interacting particle systems; Large deviation principle; Linear quadratic systems; Master equation; McKean Vlasov limit; Mean field games; Systemic risk; Transport inequalities

Indexed keywords


EID: 85086705967     PISSN: 00911798     EISSN: 2168894X     Source Type: Journal    
DOI: 10.1214/19-AOP1359     Document Type: Article
Times cited : (757)

References (39)
  • 1
    • 85056088593 scopus 로고    scopus 로고
    • Analysis of a finite state many player game using its master equation
    • MR3860894
    • Bayraktar, E. and Cohen, A. (2018). Analysis of a finite state many player game using its master equation. SIAM J. Control Optim. 56 3538-3568. MR3860894 https://doi.org/10.1137/17M113887X
    • (2018) SIAM J. Control Optim , vol.56 , pp. 3538-3568
    • Bayraktar, E.1    Cohen, A.2
  • 2
    • 0003024428 scopus 로고
    • Méthode de Laplace: étude variationnelle des fluctuations de diffusions de type "champ moyen"
    • MR1080535
    • Ben Arous, G. and Brunaud, M. (1990). Méthode de Laplace: étude variationnelle des fluctuations de diffusions de type "champ moyen". Stoch. Stoch. Rep. 31 79-144. MR1080535 https://doi.org/10.1080/03610919008833649
    • (1990) Stoch. Stoch. Rep , vol.31 , pp. 79-144
    • Ben Arous, G.1    Brunaud, M.2
  • 4
    • 84929045034 scopus 로고    scopus 로고
    • The master equation in mean field theory
    • MR3343705
    • Bensoussan, A., Frehse, J. and Yam, S. C. P. (2015). The master equation in mean field theory. J. Math. Pures Appl.(9) 103 1441-1474. MR3343705 https://doi.org/10.10167j.matpur.2014.11.005
    • (2015) J. Math. Pures. Appl , vol.9 , Issue.103 , pp. 1441-1474
    • Bensoussan, A.1    Frehse, J.2    Yam, S.C.P.3
  • 5
    • 85018981679 scopus 로고    scopus 로고
    • On the interpretation of the Master Equation
    • MR3652408
    • Bensoussan, A., Frehse, J. and Yam, S. C. P. (2017). On the interpretation of the Master Equation. Stochastic Process. Appl. 127 2093-2137. MR3652408 https://doi.org/10.1016/jj.spa.2016.10.004
    • (2017) Stochastic Process. Appl , vol.127 , pp. 2093-2137
    • Bensoussan, A.1    Frehse, J.2    Yam, S.C.P.3
  • 6
    • 0002829137 scopus 로고    scopus 로고
    • Exponential integrability and transportation cost related to logarithmic Sobolev inequalities
    • MR1682772
    • Bobkov, S. G. and Götze, F. (1999). Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 1-28. MR1682772 https://doi.org/10.1006/jfan.1998.3326
    • (1999) J. Funct. Anal , vol.163 , pp. 1-28
    • Bobkov, S.G.1    Götze, F.2
  • 7
    • 77956719419 scopus 로고    scopus 로고
    • Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation
    • MR2731396
    • Bolley, F., Guillin, A. and Malrieu, F. (2010). Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. ESAIM Math. Model. Numer. Anal. 44 867884. MR2731396 https://doi.org/10.1051/m2an/2010045
    • (2010) ESAIM Math. Model. Numer. Anal , vol.44 , pp. 867-884
    • Bolley, F.1    Guillin, A.2    Malrieu, F.3
  • 8
    • 33845889473 scopus 로고    scopus 로고
    • Quantitative concentration inequalities for empirical measures on non-compact spaces
    • MR2280433
    • BOLLEY, F., GUILLIN, A. and VILLANI, C. (2007). Quantitative concentration inequalities for empirical measures on non-compact spaces. Probab. Theory Related Fields 137 541-593. MR2280433 https://doi.org/10.1007/s00440-006-0004-7
    • (2007) Probab. Theory Related Fields , vol.137 , pp. 541-593
    • Bolley, F.1    Guillin, A.2    Villani, C.3
  • 9
    • 84865069712 scopus 로고    scopus 로고
    • Large deviation properties of weakly interacting processes via weak convergence methods
    • MR2917767
    • Budhiraja, A., Dupuis, P. and FISCHER, M. (2012). Large deviation properties of weakly interacting processes via weak convergence methods. Ann. Probab. 40 74-102. MR2917767 https://doi.org/10.1214/10-AOP616
    • (2012) Ann. Probab , vol.40 , pp. 74-102
    • Budhiraja, A.1    Dupuis, P.2    Fischer, M.3
  • 11
    • 84919448149 scopus 로고    scopus 로고
    • The master equation for large population equilibriums. In Stochastic Analysis and Applications 2014
    • Springer, Cham. MR3332710
    • Carmona, R. and Delarue, F. (2014). The master equation for large population equilibriums. In Stochastic Analysis and Applications 2014. Springer Proc. Math. Stat. 100 77-128. Springer, Cham. MR3332710 https://doi.org/10.1007/978-3-319-11292-3_4
    • (2014) Springer Proc. Math. Stat , vol.100 , pp. 77-128
    • Carmona, R.1    Delarue, F.2
  • 14
    • 84930019381 scopus 로고    scopus 로고
    • Mean field games and systemic risk
    • MR3325083
    • Carmona, R., Fouque, J.-P. and SUN, L.-H. (2015). Mean field games and systemic risk. Commun. Math. Sci. 13 911-933. MR3325083 https://doi.org/10.4310/CMS.2015.v13.n4.a4
    • (2015) Commun. Math. Sci , vol.13 , pp. 911-933
    • Carmona, R.1    Fouque, J.-P.2    Sun, L.-H.3
  • 15
    • 84979084054 scopus 로고    scopus 로고
    • A probabilistic approach to mean field games with major and minor players. Ann
    • MR3513598
    • Carmona, R. and Zhu, X. (2016). A probabilistic approach to mean field games with major and minor players. Ann. Appl. Probab. 26 1535-1580. MR3513598 https://doi.org/10.1214/15-AAP1125
    • (2016) Appl. Probab , vol.26 , pp. 1535-1580
    • Carmona, R.1    Zhu, X.2
  • 17
    • 85058804507 scopus 로고    scopus 로고
    • Convergence, fluctuations and large deviations for finite state mean field games via the master equation
    • Cecchin, A. and PELINO, G. (2019). Convergence, fluctuations and large deviations for finite state mean field games via the master equation. Stochastic Process. Appl. 129 4510-4555.
    • (2019) Stochastic Process. Appl , vol.129 , pp. 4510-4555
    • Cecchin, A.1    Pelino, G.2
  • 19
    • 0001356070 scopus 로고
    • Large deviations from the McKean-Vlasov limit for weakly interacting diffusions
    • MR0885876
    • Dawson, D.A. and GÄRTNER, J. (1987). Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics 20 247-308. MR0885876 https://doi.org/10.1080/17442508708833446
    • (1987) Stochastics , vol.20 , pp. 247-308
    • Dawson, D.A.1    Gärtner, J.2
  • 20
    • 85072069003 scopus 로고    scopus 로고
    • From the master equation to mean field game limit theory: A central limit theorem
    • Delarue, F., Lacker, D. and RAMANAN, K. (2018). From the master equation to mean field game limit theory: A central limit theorem. Electron. J. Probab. 24 1-54.
    • (2018) Electron. J. Probab , vol.24 , pp. 1-54
    • Delarue, F.1    Lacker, D.2    Ramanan, K.3
  • 22
    • 4544338134 scopus 로고    scopus 로고
    • Transportation cost-information inequalities and applications to random dynamical systems and diffusions
    • MR2078555
    • Djellout, H., GUILLIN, A. and Wu, L. (2004). Transportation cost-information inequalities and applications to random dynamical systems and diffusions. Ann. Probab. 32 2702-2732. MR2078555 https://doi.org/10.1214/009117904000000531
    • (2004) Ann. Probab , vol.32 , pp. 2702-2732
    • Djellout, H.1    Guillin, A.2    Wu, L.3
  • 23
    • 84907440986 scopus 로고    scopus 로고
    • On the form of the large deviation rate function for the empirical measures of weakly interacting systems
    • MR3263089
    • FISCHER, M. (2014). On the form of the large deviation rate function for the empirical measures of weakly interacting systems. Bernoulli 20 1765-1801. MR3263089 https://doi.org/10.3150/13-BEJ540
    • (2014) Bernoulli , vol.20 , pp. 1765-1801
    • Fischer, M.1
  • 24
    • 85019652145 scopus 로고    scopus 로고
    • On the connection between symmetric N-player games and mean field games. Ann
    • MR3655853
    • FISCHER, M. (2017). On the connection between symmetric N-player games and mean field games. Ann. Appl. Probab. 27 757-810. MR3655853 https://doi.org/10.1214/16-AAP1215
    • (2017) Appl. Probab , vol.27 , pp. 757-810
    • Fischer, M.1
  • 25
    • 84939257541 scopus 로고    scopus 로고
    • On the rate of convergence in Wasserstein distance of the empirical measure
    • MR3383341
    • F0URNIER, N. and GUILLIN, A. (2015). On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 707-738. MR3383341 https://doi.org/10.1007/s00440-014-0583-7
    • (2015) Probab. Theory Related Fields , vol.162 , pp. 707-738
    • Fournier, N.1    Guillin, A.2
  • 26
    • 84941797484 scopus 로고    scopus 로고
    • Existence of a solution to an equation arising from the theory of mean field games
    • MR3397332
    • Gangbo, W. and SwiECH, A. (2015). Existence of a solution to an equation arising from the theory of mean field games. J. Differential Equations 259 6573-6643. MR3397332 https://doi.org/10.1016Zj.jde.2015.08.001
    • (2015) J. Differential Equations , vol.259 , pp. 6573-6643
    • Gangbo, W.1    SwiEch, A.2
  • 27
    • 77049099356 scopus 로고    scopus 로고
    • A characterization of dimension free concentration in terms of transportation inequalities. Ann
    • MR2573565
    • GOZLAN, N. (2009). A characterization of dimension free concentration in terms of transportation inequalities. Ann. Probab. 37 2480-2498. MR2573565 https://doi.org/10.1214/09-A0P470
    • (2009) Probab , vol.37 , pp. 2480-2498
    • Gozlan, N.1
  • 28
    • 84872149233 scopus 로고    scopus 로고
    • Transport inequalities. A survey
    • MR2895086
    • G0ZLAN, N. and LEONARD, C. (2010). Transport inequalities. A survey. Markov Process. Related Fields 16 635-736. MR2895086
    • (2010) Markov Process. Related Fields , vol.16 , pp. 635-736
    • Gozlan, N.1    Leonard, C.2
  • 29
    • 43949158720 scopus 로고
    • Mean rates of convergence of empirical measures in the Wasserstein metric
    • MR1329874
    • H0R0WITZ, J. and Karandikar, R. L. (1994). Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math. 55 261-273. MR1329874 https://doi.org/10.1016/0377-0427(94)90033-7
    • (1994) J. Comput. Appl. Math , vol.55 , pp. 261-273
    • Horowitz, J.1    Karandikar, R.L.2
  • 30
    • 84936864615 scopus 로고    scopus 로고
    • A general characterization of the mean field limit for stochastic differential games
    • MR3520014
    • LACKER, D. (2016). A general characterization of the mean field limit for stochastic differential games. Probab. Theory Related Fields 165 581-648. MR3520014 https://doi.org/10.1007/s00440-015-0641-9
    • (2016) Probab. Theory Related Fields , vol.165 , pp. 581-648
    • Lacker, D.1
  • 31
    • 85068560378 scopus 로고    scopus 로고
    • Rare Nash equilibria and the price of anarchy in large static games
    • Lacker, D. andRAMANAN, K. (2019). Rare Nash equilibria and the price of anarchy in large static games. Math. Oper. Res. 44 400-422.
    • (2019) Math. Oper. Res , vol.44 , pp. 400-422
    • Lacker, D.1    Ramanan, K.2
  • 33
    • 34047127341 scopus 로고    scopus 로고
    • Mean field games
    • MR2295621
    • Lasry, J.-M. and Lions, P.-L. (2007). Mean field games. Jpn. J. Math. 2 229-260. MR2295621 https://doi.org/10.1007/s11537-007-0657-8
    • (2007) Jpn. J. Math , vol.2 , pp. 229-260
    • Lasry, J.-M.1    Lions, P.-L.2
  • 35
    • 70949085043 scopus 로고    scopus 로고
    • A note on the differentiability of conjugate functions
    • MR2563594
    • Strömberg, T. (2009). A note on the differentiability of conjugate functions. Arch. Math.(Basel) 93 481-485. MR2563594 https://doi.org/10.1007/s00013-009-0050-3
    • (2009) Arch. Math.(Basel) , vol.93 , pp. 481-485
    • Strömberg, T.1
  • 36
    • 0000395295 scopus 로고
    • On the support of diffusion processes with applications to the strong maximum principle
    • (Univ. California, Berkeley, Calif., 1970/1971), Probability theory Univ. California Press, Berkeley, CA. MR0400425
    • Stroock, D.W. and Varadhan, S. R. S. (1972). On the support of diffusion processes with applications to the strong maximum principle. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability theory Univ. California Press, Berkeley, CA. 333-359. MR0400425
    • (1972) In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability , vol.3 , pp. 333-359
    • Stroock, D.W.1    Varadhan, S.R.S.2
  • 37
    • 0001105004 scopus 로고
    • Topics in propagation of chaos. In École D'Été de Probabilités de Saint-Flour XIX-1989
    • Springer, Berlin. MR1108185
    • Sznitman, A.-S. (1991). Topics in propagation of chaos. In École D'Été de Probabilités de Saint-Flour XIX-1989. Lecture Notes in Math. 1464 165-251. Springer, Berlin. MR1108185 https://doi.org/10.1007/BFb0085169
    • (1991) Lecture Notes in Math , vol.1464 , pp. 165-251
    • Sznitman, A.-S.1
  • 38
    • 84893563431 scopus 로고    scopus 로고
    • Transportation cost inequalities for diffusions under uniform distance
    • Springer, Heidelberg. MR3236093
    • Üstünel, A. S. (2012). Transportation cost inequalities for diffusions under uniform distance. In Stochastic Analysis and Related Topics. Springer Proc. Math. Stat. 22 203-214. Springer, Heidelberg. MR3236093 https://doi.org/10.1007/978-3-642-29982-7_9
    • (2012) Stochastic Analysis and Related Topics. Springer Proc. Math. Stat , vol.22 , pp. 203-214
    • Üstünel, A.S.1
  • 39
    • 74849133400 scopus 로고    scopus 로고
    • Sanov's theorem in the Wasserstein distance: A necessary and sufficient condition
    • MR2593592
    • Wang, R., Wang, X. and Wu, L. (2010). Sanov's theorem in the Wasserstein distance: A necessary and sufficient condition. Statist. Probab. Lett. 80 505-512. MR2593592 https://doi.org/10.1016/j.spl.2009.12.003
    • (2010) Statist. Probab. Lett , vol.80 , pp. 505-512
    • Wang, R.1    Wang, X.2    Wu, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.