메뉴 건너뛰기




Volumn , Issue , 2017, Pages

The neural noisy channel

Author keywords

[No Author keywords available]

Indexed keywords

DECODING; RECURRENT NEURAL NETWORKS;

EID: 85088231409     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (63)

References (39)
  • 2
    • 85083953689 scopus 로고    scopus 로고
    • Neural machine translation by jointly learning to align and translate
    • Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. In Proc. ICLR, 2015.
    • (2015) Proc. ICLR
    • Bahdanau, D.1    Cho, K.2    Bengio, Y.3
  • 3
    • 84946076597 scopus 로고    scopus 로고
    • An improved error model for noisy channel spelling correction
    • Eric Brill and Robert C. Moore. An improved error model for noisy channel spelling correction. In Proc. ACL, 2000.
    • (2000) Proc. ACL
    • Brill, E.1    Moore, R.C.2
  • 5
    • 85011958920 scopus 로고    scopus 로고
    • Semi-supervised learning for neural machine translation
    • Yong Cheng, Wei Xu, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu. Semi-supervised learning for neural machine translation. In Proc. ACL, 2016.
    • (2016) Proc. ACL
    • Cheng, Y.1    Xu, W.2    He, Z.3    He, W.4    Wu, H.5    Sun, M.6    Liu, Y.7
  • 6
    • 84994154380 scopus 로고    scopus 로고
    • Abstractive sentence summarization with attentive recurrent neural networks
    • Sumit Chopra, Michael Auli, and Alexander M. Rush. Abstractive sentence summarization with attentive recurrent neural networks. In Proc. NAACL, 2016.
    • (2016) Proc. NAACL
    • Chopra, S.1    Auli, M.2    Rush, A.M.3
  • 7
    • 84905693352 scopus 로고    scopus 로고
    • Supervised learning of complete morphological paradigms
    • Greg Durrett and John DeNero. Supervised learning of complete morphological paradigms. In HLT-NAACL, 2013.
    • (2013) HLT-NAACL
    • Durrett, G.1    DeNero, J.2
  • 8
    • 24344457554 scopus 로고    scopus 로고
    • A noisy-channel approach to question answering
    • Abdessamad Echihabi and Daniel Marcu. A noisy-channel approach to question answering. In Proc. ACL, 2003.
    • (2003) Proc. ACL
    • Echihabi, A.1    Marcu, D.2
  • 9
    • 26444565569 scopus 로고
    • Finding structure in time
    • Jeffrey L. Elman. Finding structure in time. Cognitive science, 14(2):179-211, 1990.
    • (1990) Cognitive Science , vol.14 , Issue.2 , pp. 179-211
    • Elman, J.L.1
  • 10
    • 84994149005 scopus 로고    scopus 로고
    • Morphological inflection generation using character sequence to sequence learning
    • Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and Chris Dyer. Morphological inflection generation using character sequence to sequence learning. In Proc. HLT-NAACL, 2016.
    • (2016) Proc. HLT-NAACL
    • Faruqui, M.1    Tsvetkov, Y.2    Neubig, G.3    Dyer, C.4
  • 13
    • 33749259827 scopus 로고    scopus 로고
    • Connectionist temporal classification: Labelling unsegmented sequence data with recurrent neural networks
    • Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist temporal classification: labelling unsegmented sequence data with recurrent neural networks. In ICML, 2006.
    • (2006) ICML
    • Graves, A.1    Fernández, S.2    Gomez, F.3    Schmidhuber, J.4
  • 19
    • 84973382845 scopus 로고    scopus 로고
    • Character-level incremental speech recognition with recurrent neural networks
    • Kyuyeon Hwang and Wonyong Sung. Character-level incremental speech recognition with recurrent neural networks. In Proc. ICASSP, 2016.
    • (2016) Proc. ICASSP
    • Hwang, K.1    Sung, W.2
  • 22
    • 84926283798 scopus 로고    scopus 로고
    • Recurrent continuous translation models
    • Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation models. In Proc. EMNLP, 2013.
    • (2013) Proc. EMNLP
    • Kalchbrenner, N.1    Blunsom, P.2
  • 23
    • 84941620184 scopus 로고    scopus 로고
    • ADaM: A method for stochastic optimization
    • Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proc. ICIR, 2015.
    • (2015) Proc. ICIR
    • Kingma, D.P.1    Ba, J.2
  • 24
    • 33646812611 scopus 로고    scopus 로고
    • Conditional structure versus conditional estimation in nlp models
    • Dan Klein and Christopher D. Manning. Conditional structure versus conditional estimation in nlp models. In Proc. EMNLP, 2001.
    • (2001) Proc. EMNLP
    • Klein, D.1    Manning, C.D.2
  • 25
    • 85083953994 scopus 로고    scopus 로고
    • Segmental recurrent neural networks
    • Lingpeng Kong, Chris Dyer, and Noah A Smith. Segmental recurrent neural networks. Proc. ICLR, 2016.
    • (2016) Proc. ICLR
    • Kong, L.1    Dyer, C.2    Smith, N.A.3
  • 26
    • 84994162824 scopus 로고    scopus 로고
    • Agreement on target-bidirectional neural machine translation
    • Lemao Liu, Masao Utiyama, Andrew Finch, and Eiichiro Sumita. Agreement on target-bidirectional neural machine translation. In Proc. NAACL, 2016.
    • (2016) Proc. NAACL
    • Liu, L.1    Utiyama, M.2    Finch, A.3    Sumita, E.4
  • 27
    • 85072846371 scopus 로고    scopus 로고
    • Language as a latent variable: Discrete generative models for sentence compression
    • Yishu Miao and Phil Blunsom. Language as a latent variable: Discrete generative models for sentence compression. In Proc. EMNLP, 2016.
    • (2016) Proc. EMNLP
    • Miao, Y.1    Blunsom, P.2
  • 29
    • 84960154310 scopus 로고    scopus 로고
    • Inflection generation as discriminative string transduction
    • Garrett Nicolai, Colin Cherry, and Grzegorz Kondrak. Inflection generation as discriminative string transduction. In Proc. HLT-NAACL, 2015.
    • (2015) Proc. HLT-NAACL
    • Nicolai, G.1    Cherry, C.2    Kondrak, G.3
  • 30
    • 85011836388 scopus 로고    scopus 로고
    • A neural attention model for abstractive sentence summarization
    • Alexander M. Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive sentence summarization. In Proc. EMNLP, 2015.
    • (2015) Proc. EMNLP
    • Rush, A.M.1    Chopra, S.2    Weston, J.3
  • 31
    • 84926395598 scopus 로고    scopus 로고
    • Incremental decoding for phrase-based statistical machine translation
    • Baskaran Sankaran, Ajeet Grewal, and Anoop Sarkar. Incremental decoding for phrase-based statistical machine translation. In Proc. WMT, 2010.
    • (2010) Proc. WMT
    • Sankaran, B.1    Grewal, A.2    Sarkar, A.3
  • 32
    • 85011945222 scopus 로고    scopus 로고
    • Improving neural machine translation models with monolingual data
    • Rico Sennrich, Barry Haddow, and Alexandra Birch. Improving neural machine translation models with monolingual data. In Proc. ACL, 2016.
    • (2016) Proc. ACL
    • Sennrich, R.1    Haddow, B.2    Birch, A.3
  • 33
    • 84940644968 scopus 로고
    • A mathematical theory of communication
    • Claude Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3): 379-423, 1948.
    • (1948) Bell System Technical Journal , vol.27 , Issue.3 , pp. 379-423
    • Shannon, C.1
  • 34
    • 0010323861 scopus 로고    scopus 로고
    • Computational complexity of probabilistic disambiguation by means of tree-grammars
    • Khalil Sima'an. Computational complexity of probabilistic disambiguation by means of tree-grammars. In Proc. COLING, 1996.
    • (1996) Proc. COLING
    • Sima'An, K.1
  • 35
    • 84928547704 scopus 로고    scopus 로고
    • Sequence to sequence learning with neural networks
    • Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks. In Proc. NIPS, 2014.
    • (2014) Proc. NIPS
    • Sutskever, I.1    Vinyals, O.2    Le, Q.V.3
  • 36
    • 0006702492 scopus 로고    scopus 로고
    • A DP-based search using monotone alignments in statistical translation
    • Christoph Tillmann, Stephan Vogel, Hermann Ney, and Alex Zubiaga. A DP-based search using monotone alignments in statistical translation. In Proc. EACL, 1997.
    • (1997) Proc. EACL
    • Tillmann, C.1    Vogel, S.2    Ney, H.3    Zubiaga, A.4
  • 39
    • 85072831387 scopus 로고    scopus 로고
    • Online segment to segment neural transduction
    • Lei Yu, Jan Buys, and Phil Blunsom. Online segment to segment neural transduction. In Proc. EMNLP, 2016.
    • (2016) Proc. EMNLP
    • Yu, L.1    Buys, J.2    Blunsom, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.