-
1
-
-
14244250804
-
Understanding student differences
-
Felder, R.M., and Brent R.,Understanding Student Differences, Journal of Engineering Education, Vol. 94, No. 1, 2005, pp. 57-72.
-
(2005)
Journal of Engineering Education
, vol.94
, Issue.1
, pp. 57-72
-
-
Felder, R.M.1
Brent, R.2
-
2
-
-
0004134359
-
-
Washington, D.C.: National Academy Press
-
Bransford, J.D., Brown, A.L., and Cocking, R., eds., How People Learn: Brain, Mind, Experience, and School, Washington, D.C.: National Academy Press, 2000.
-
(2000)
How People Learn: Brain, Mind, Experience, and School
-
-
Bransford, J.D.1
Brown, A.L.2
Cocking, R.3
-
3
-
-
84862503676
-
Clustered knowledge tracing
-
Chania, Greece
-
Pardos, Z. A., Trivedi, S., Heffernan. N. T., and Sárközy. G. N., Clustered Knowledge Tracing, In the Proceedings of the 11th International Conference on Intelligent Tutoring Systems 2012, Chania, Greece.
-
The Proceedings of the 11th International Conference on Intelligent Tutoring Systems 2012
-
-
Pardos, Z.A.1
Trivedi, S.2
Heffernan, N.T.3
Sárközy, G.N.4
-
4
-
-
79959288180
-
Clustering students to generate an ensemble to improve standard test score predictions
-
G. Biswas et al. (Eds.): AIED 2011, LNAI 6738, Auckland, New Zealand
-
Trivedi, S., Pardos, Z. A., Heffernan, N. T., Clustering Students to Generate an Ensemble to Improve Standard Test Score Predictions, G. Biswas et al. (Eds.): AIED 2011, LNAI 6738, In The proceedings of the 15th International Conference on Artificial Intelligence in Education 2011, Auckland, New Zealand, pp. 377-384.
-
The Proceedings of the 15th International Conference on Artificial Intelligence in Education 2011
, pp. 377-384
-
-
Trivedi, S.1
Pardos, Z.A.2
Heffernan, N.T.3
-
5
-
-
84857465730
-
Spectral clustering in educational data mining
-
Eindhoven Netherlands
-
Trivedi, S., Pardos, Z. A., Sárközy, G. N., Heffernan, N. T., Spectral Clustering in Educational Data Mining, In Proceedings of the 4th International Conference on Educational Data Mining 2011, Eindhoven Netherlands, pp. 129-138.
-
Proceedings of the 4th International Conference on Educational Data Mining 2011
, pp. 129-138
-
-
Trivedi, S.1
Pardos, Z.A.2
Sárközy, G.N.3
Heffernan, N.T.4
-
6
-
-
85072301052
-
The utility of clustering in prediction tasks
-
under review
-
Trivedi, S., Pardos, Z. A., and Heffernan, N. T., The Utility of Clustering in Prediction Tasks, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics (under review).
-
IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics
-
-
Trivedi, S.1
Pardos, Z.A.2
Heffernan, N.T.3
-
7
-
-
0001138328
-
Algorithm AS 136: A k-means clustering algorithm
-
Hartigan, J. A., Wong, M. A., Algorithm AS 136: A K-Means Clustering Algorithm, Journal of the Royal Statistical Society, Series C (Applied Statistics), 1979, 28 (1): pp. 100-108.
-
(1979)
Journal of the Royal Statistical Society, Series C (Applied Statistics)
, vol.28
, Issue.1
, pp. 100-108
-
-
Hartigan, J.A.1
Wong, M.A.2
-
9
-
-
2942723846
-
A divisive Information-Theoretic feature clustering algorithm for text classication
-
Dhillon, I. S., S, Mallela., and Kumar, R., A divisive Information-Theoretic Feature Clustering Algorithm for text classication. Journal of Machine Learning Research, 3(4): pp. 1265-1287, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, Issue.4
, pp. 1265-1287
-
-
Dhillon, I.S.1
Mallela, S.2
Kumar, R.3
-
11
-
-
0038014879
-
Co-clustering of biological networks and gene expression data
-
Hanisch, D., Zein, A., Zimmer, R., Lengauer, T., Co-clustering of biological networks and gene expression data. Bioinformatics 18 (Suppl.), 2002, pp. 145-154.
-
(2002)
Bioinformatics
, vol.18
, pp. 145-154
-
-
Hanisch, D.1
Zein, A.2
Zimmer, R.3
Lengauer, T.4
-
12
-
-
0033736476
-
Genetic network inference: From co-expression clustering to reverse engineering
-
D’Haeseleer, P., Liang, S., and Somoyogi, R., Genetic Network Inference: From co-expression clustering to reverse engineering, Bioinformatics, 16, 2000, pp. 707-726.
-
(2000)
Bioinformatics
, vol.16
, pp. 707-726
-
-
D’Haeseleer, P.1
Liang, S.2
Somoyogi, R.3
-
14
-
-
77952375075
-
Information-theoretic co-clustering
-
Dhillon, I., Mallela, S., and Modha, D., Information-theoretic co-clustering. In Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD), pp. 89-98, 2003.
-
(2003)
Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD)
, pp. 89-98
-
-
Dhillon, I.1
Mallela, S.2
Modha, D.3
-
15
-
-
34548691246
-
A generalized maximum entropy approach to bregman co-clustering and matrix approximation
-
Banerjee, A., Dhillon, I. S., Ghosh, J., Merugu, S., and Modha, D. S, A Generalized Maximum Entropy Approach to Bregman Co-clustering and Matrix Approximation, Journal of Machine Learning Research, 8, pp. 1919-1198, 2007.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1919-11198
-
-
Banerjee, A.1
Dhillon, I.S.2
Ghosh, J.3
Merugu, S.4
Modha, D.S.5
-
16
-
-
0034244751
-
Normalized cuts and image segmentation
-
J. Shi, and J. Malik, Normalized Cuts and Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22 (8), pp. 888-905, 2000.
-
(2000)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.22
, Issue.8
, pp. 888-905
-
-
Shi, J.1
Malik, J.2
-
17
-
-
69349090197
-
Learning deep architectures for AI
-
Now Publishers
-
Bengio, Y., Learning deep architectures for AI. Foundations and Trends in Machine Learning, 2(1): pp. 1-127, Now Publishers, 2009.
-
(2009)
Foundations and Trends in Machine Learning
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
18
-
-
80053403826
-
Ensemble methods in machine learning
-
Kittler, J., Roli, F. (eds.) LNCS,. Springer, New York
-
Dietterich, T.G., Ensemble Methods in Machine Learning. In: Kittler, J., Roli, F. (eds.) First International workshop on Multiple Classifier Systems. LNCS, pp. 1-15. Springer, New York, 2000.
-
(2000)
First International Workshop on Multiple Classifier Systems
, pp. 1-15
-
-
Dietterich, T.G.1
-
19
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T.G., An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization, Machine Learning 40, pp. 139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.G.1
-
20
-
-
0035478854
-
Random forests
-
Breiman, L., Random Forests, Machine Learning 45(1), pp. 5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
22
-
-
77249123586
-
-
Technical Report. Cambridge, MA. Illinois University, Urbana, Center for the Study of Reading. ED 269735
-
Campione, J. C., Brown, A. L.: Dynamic Assessment: One Approach and some Initial Data. Technical Report. No. 361. Cambridge, MA. Illinois University, Urbana, Center for the Study of Reading. ED 269735, 1985.
-
(1985)
Dynamic Assessment: One Approach and Some Initial Data
-
-
Campione, J.C.1
Brown, A.L.2
-
23
-
-
68149170049
-
Addressing the assessment challenge in an online system that tutors as it assesses
-
Feng, M., Heffernan, N.T., Koedinger, K.R.: Addressing the assessment challenge in an online system that tutors as it assesses. User Modeling and User-Adapted Interaction: The Journal of Personalization Research 19(3), 2009.
-
(2009)
User Modeling and User-Adapted Interaction: The Journal of Personalization Research
, vol.19
, Issue.3
-
-
Feng, M.1
Heffernan, N.T.2
Koedinger, K.R.3
-
24
-
-
0001216057
-
The laplacian spectrum of graphs
-
Kalamazoo, MI, New York: Wiley, 1991
-
Mohar, B., The Laplacian spectrum of graphs. In Graph theory, combinatorics, and applications. Vol. 2 (Kalamazoo, MI, 1988), New York: Wiley, 1991, pp. 871-898.
-
(1988)
Graph Theory, Combinatorics, and Applications
, vol.2
, pp. 871-898
-
-
Mohar, B.1
|