메뉴 건너뛰기




Volumn , Issue , 2014, Pages 867-874

Continuous manifold based adaptation for evolving visual domains

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SCIENCE; COMPUTERS; ELECTRICAL ENGINEERING; SOFTWARE ENGINEERING;

EID: 84911399859     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.116     Document Type: Conference Paper
Times cited : (176)

References (29)
  • 1
    • 84856675275 scopus 로고    scopus 로고
    • Tabula rasa: Model transfer for object category detection
    • Y. Aytar and A. Zisserman. Tabula rasa: Model transfer for object category detection. In Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Aytar, Y.1    Zisserman, A.2
  • 4
    • 79951490162 scopus 로고    scopus 로고
    • Online methods for multi-domain learning and adaptation
    • M. Dredze and K. Crammer. Online methods for multi-domain learning and adaptation. In Proc. EMNLP, 2008.
    • (2008) Proc. EMNLP
    • Dredze, M.1    Crammer, K.2
  • 5
    • 84867113087 scopus 로고    scopus 로고
    • Learning with augmented features for heterogeneous domain adaptation
    • L. Duan, D. Xu, and Ivor W. Tsang. Learning with augmented features for heterogeneous domain adaptation. In Proc. ICML, 2012.
    • (2012) Proc. ICML
    • Duan, L.1    Xu, D.2    Tsang, I.W.3
  • 8
    • 70349487746 scopus 로고    scopus 로고
    • On-line speaker adaptation on telephony speech data with adaptively trained acoustic models
    • D. Giuliani, R. Gretter, and F. Brugnara. On-line speaker adaptation on telephony speech data with adaptively trained acoustic models. In Proc. ICASSP, 2009.
    • (2009) Proc. ICASSP
    • Giuliani, D.1    Gretter, R.2    Brugnara, F.3
  • 9
    • 84866657270 scopus 로고    scopus 로고
    • Geodesic flow kernel for unsupervised domain adaptation
    • B. Gong, Y. Shi, F. Sha, and K. Grauman. Geodesic flow kernel for unsupervised domain adaptation. In Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Gong, B.1    Shi, Y.2    Sha, F.3    Grauman, K.4
  • 10
    • 84863396387 scopus 로고    scopus 로고
    • Domain adaptation for object recognition: An unsupervised approach
    • R. Gopalan, R. Li, and R. Chellappa. Domain adaptation for object recognition: An unsupervised approach. In Proc. ICCV, 2011.
    • (2011) Proc. ICCV
    • Gopalan, R.1    Li, R.2    Chellappa, R.3
  • 11
    • 84887334107 scopus 로고    scopus 로고
    • Discovering latent domains for multisource domain adaptation
    • J. Hoffman, B. Kulis, T. Darrell, and K. Saenko. Discovering latent domains for multisource domain adaptation. In Proc. ECCV, 2012.
    • (2012) Proc. ECCV
    • Hoffman, J.1    Kulis, B.2    Darrell, T.3    Saenko, K.4
  • 19
    • 84898809243 scopus 로고    scopus 로고
    • Style-aware mid-level representation for discovering visual connections in space and time
    • Y. J. Lee, A. Efros, and M. Hebert. Style-aware mid-level representation for discovering visual connections in space and time. In Proc. ICCV, 2013.
    • (2013) Proc. ICCV
    • Lee, Y.J.1    Efros, A.2    Hebert, M.3
  • 28
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • A. Torralba and A. Efros. Unbiased look at dataset bias. In CVPR, 2011.
    • (2011) CVPR
    • Torralba, A.1    Efros, A.2
  • 29
    • 49549114434 scopus 로고    scopus 로고
    • Adapting svm classifiers to data with shifted distributions
    • J. Yang, R. Yan, and A. Hauptmann. Adapting svm classifiers to data with shifted distributions. In ICDM Workshops, 2007.
    • (2007) ICDM Workshops
    • Yang, J.1    Yan, R.2    Hauptmann, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.