메뉴 건너뛰기




Volumn 4, Issue January, 2014, Pages 2825-2833

Multitask learning meets tensor factorization: Task imputation via convex optimization

Author keywords

[No Author keywords available]

Indexed keywords

CONVEX OPTIMIZATION; INFORMATION SCIENCE; RELAXATION PROCESSES;

EID: 84937847816     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (94)

References (26)
  • 1
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unla-beled data
    • R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unla-beled data. J. Mach. Learn. Res., 6: 1817-1853, 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 2
    • 84864063089 scopus 로고    scopus 로고
    • Multi-task feature learning
    • B. Schölkopf, J. Platt, and T. Hoffman, editors MIT Press, Cambridge, MA
    • A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Adv. Neural. Inf. Process. Syst. 19, pages 41-48. MIT Press, Cambridge, MA, 2007.
    • (2007) Adv. Neural. Inf. Process. Syst. , vol.19 , pp. 41-48
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 3
    • 85162007328 scopus 로고    scopus 로고
    • A spectral regularization framework for multi-task structure learning
    • J. Platt, D. Koller, Y. Singer, and S. Roweis, editors Curran Associates, Inc.
    • A. Argyriou, M. Pontil, Y. Ying, and C. A. Micchelli. A spectral regularization framework for multi-task structure learning. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Adv. Neural. Inf. Process. Syst. 20, pages 25-32. Curran Associates, Inc., 2008.
    • (2008) Adv. Neural. Inf. Process. Syst. , vol.20 , pp. 25-32
    • Argyriou, A.1    Pontil, M.2    Ying, Y.3    Micchelli, C.A.4
  • 4
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • B. Bakker and T. Heskes. Task clustering and gating for bayesian multitask learning. J. Mach. Learn. Res., 4: 83-99, 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 5
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and Gaussian complexities: Risk bounds and structural results
    • P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. J. Mach. Learn. Res., 3: 463-482, 2002.
    • (2002) J. Mach. Learn. Res. , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 6
    • 14344277592 scopus 로고    scopus 로고
    • A model of inductive bias learning
    • J. Baxter. A model of inductive bias learning. J. Artif. Intell. Res., 12: 149-198, 2000.
    • (2000) J. Artif. Intell. Res. , vol.12 , pp. 149-198
    • Baxter, J.1
  • 7
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • R. Caruana. Multitask learning. Machine learning, 28(1): 41-75, 1997.
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 9
    • 0034144761 scopus 로고    scopus 로고
    • On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors
    • L. De Lathauwer, B. De Moor, and J. Vandewalle. On the best rank-1 and rank-(R1,R2,...,RN) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl., 21(4): 1324-1342, 2000.
    • (2000) SIAM J. Matrix Anal. Appl. , vol.21 , Issue.4 , pp. 1324-1342
    • De Lathauwer, L.1    De Moor, B.2    Vandewalle, J.3
  • 10
    • 0034853839 scopus 로고    scopus 로고
    • A rank minimization heuristic with application to minimum order system approximation
    • M. Fazel, H. Hindi, and S. P. Boyd. A Rank Minimization Heuristic with Application to Minimum Order System Approximation. In Proc. of the American Control Conference, 2001.
    • (2001) Proc. of the American Control Conference
    • Fazel, M.1    Hindi, H.2    Boyd, S.P.3
  • 12
    • 79551661156 scopus 로고    scopus 로고
    • Tensor completion and low-n-rank tensor recovery via convex optimization
    • S. Gandy, B. Recht, and I. Yamada. Tensor completion and low-n-rank tensor recovery via convex optimization. Inverse Problems, 27: 025010, 2011.
    • (2011) Inverse Problems , vol.27
    • Gandy, S.1    Recht, B.2    Yamada, I.3
  • 13
    • 84859411801 scopus 로고    scopus 로고
    • Regularization techniques for learning with matrices
    • S. M. Kakade, S. Shalev-Shwartz, and A. Tewari. Regularization techniques for learning with matrices. J. Mach. Learn. Res., 13(1): 1865-1890, 2012.
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 1865-1890
    • Kakade, S.M.1    Shalev-Shwartz, S.2    Tewari, A.3
  • 14
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3): 455-500, 2009.
    • (2009) SIAM Review , vol.51 , Issue.3 , pp. 455-500
    • Kolda, T.G.1    Bader, B.W.2
  • 15
    • 85100063855 scopus 로고    scopus 로고
    • Tensor completion for estimating missing values in visual data
    • J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor completion for estimating missing values in visual data. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Liu, J.1    Musialski, P.2    Wonka, P.3    Ye, J.4
  • 16
    • 84898036145 scopus 로고    scopus 로고
    • Excess risk bounds for multitask learning with trace norm regularization
    • MIT Press
    • A. Maurer and M. Pontil. Excess risk bounds for multitask learning with trace norm regularization. In JMLR W&CP 30 (COLT2013), pages 55-76. MIT Press, 2013.
    • (2013) JMLR W&CP 30 (COLT2013) , pp. 55-76
    • Maurer, A.1    Pontil, M.2
  • 20
    • 84898932317 scopus 로고    scopus 로고
    • Maximum-margin matrix factorization
    • L. K. Saul, Y. Weiss, and L. Bottou, editors MIT Press, Cambridge, MA
    • N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factorization. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Adv. Neural. Inf. Process. Syst. 17, pages 1329-1336. MIT Press, Cambridge, MA, 2005.
    • (2005) Adv. Neural. Inf. Process. Syst. , vol.17 , pp. 1329-1336
    • Srebro, N.1    Rennie, J.D.M.2    Jaakkola, T.S.3
  • 21
    • 84899031700 scopus 로고    scopus 로고
    • Convex tensor decomposition via structured schatten norm regularization
    • C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors
    • R. Tomioka and T. Suzuki. Convex tensor decomposition via structured Schatten norm regularization. In C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Adv. Neural. Inf. Process. Syst. 26, pages 1331-1339. 2013.
    • (2013) Adv. Neural. Inf. Process. Syst. , vol.26 , pp. 1331-1339
    • Tomioka, R.1    Suzuki, T.2
  • 24
    • 84864315555 scopus 로고    scopus 로고
    • User-friendly tail bounds for sums of random matrices
    • J. A. Tropp. User-friendly tail bounds for sums of random matrices. Found. Comput. Math., 12(4): 389-434, 2012.
    • (2012) Found. Comput. Math. , vol.12 , Issue.4 , pp. 389-434
    • Tropp, J.A.1
  • 25
    • 0013953617 scopus 로고
    • Some mathematical notes on three-mode factor analysis
    • L. R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3): 279-311, 1966.
    • (1966) Psychometrika , vol.31 , Issue.3 , pp. 279-311
    • Tucker, L.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.