메뉴 건너뛰기




Volumn , Issue , 2018, Pages

Interpretable counting for visual question answering

Author keywords

[No Author keywords available]

Indexed keywords

DISCRETE CHOICE; QUESTION ANSWERING; SEQUENTIAL DECISION PROCESS; STATE OF THE ART;

EID: 85083952592     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (67)

References (48)
  • 4
    • 84993660571 scopus 로고    scopus 로고
    • Learning to compose neural networks for question answering
    • Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Learning to Compose Neural Networks for Question Answering. In NAACL, 2016b.
    • (2016) NAACL
    • Andreas, J.1    Rohrbach, M.2    Darrell, T.3    Klein, D.4
  • 7
    • 85018938177 scopus 로고    scopus 로고
    • R-FCN: Object Detection via Region-based Fully Convolutional Networks
    • Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-FCN: Object Detection via Region-based Fully Convolutional Networks. In NIPS, 2016.
    • (2016) NIPS
    • Dai, J.1    Li, Y.2    He, K.3    Sun, J.4
  • 8
    • 85044506279 scopus 로고    scopus 로고
    • Multimodal compact bilinear pooling for visual question answering and visual grounding
    • Akira Fukui, Dong Huk Park, Daylen Yang, Anna Rohrbach, Trevor Darrell, and Marcus Rohrbach. Multimodal compact bilinear pooling for visual question answering and visual grounding. In EMNLP, 2016.
    • (2016) EMNLP
    • Fukui, A.1    Park, D.H.2    Yang, D.3    Rohrbach, A.4    Darrell, T.5    Rohrbach, M.6
  • 9
    • 85029359197 scopus 로고    scopus 로고
    • Fast R-CNn
    • Ross Girshick. Fast R-CNN. In ICCV, 2015.
    • (2015) ICCV
    • Girshick, R.1
  • 10
    • 84906343066 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 11
    • 85041900002 scopus 로고    scopus 로고
    • Making the V in VQA matter: Elevating the role of image understanding in visual question answering
    • Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in VQA Matter: Elevating the Role of Image Understanding in Visual Question Answering. In CVPR, 2017.
    • (2017) CVPR
    • Goyal, Y.1    Khot, T.2    Summers-Stay, D.3    Batra, D.4    Parikh, D.5
  • 13
    • 85041904328 scopus 로고    scopus 로고
    • Learning to reason: End-to-end module networks for visual question answering
    • Ronghang Hu, Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Kate Saenko. Learning to Reason: End-to-End Module Networks for Visual Question Answering. In ICCV, 2017.
    • (2017) ICCV
    • Hu, R.1    Andreas, J.2    Rohrbach, M.3    Darrell, T.4    Saenko, K.5
  • 18
    • 85162384490 scopus 로고    scopus 로고
    • Learning to count objects in images
    • Victor Lempitsky and Andrew Zisserman. Learning To Count Objects in Images. NIPS, 2010.
    • (2010) NIPS
    • Lempitsky, V.1    Zisserman, A.2
  • 21
    • 85031922514 scopus 로고    scopus 로고
    • Knowing when to look: Adaptive attention via a visual sentinel for image captioning
    • Jiasen Lu, Caiming Xiong, Devi Parikh, and Richard Socher. Knowing When to Look: Adaptive Attention via A Visual Sentinel for Image Captioning. In CVPR, 2016a.
    • (2016) CVPR
    • Lu, J.1    Xiong, C.2    Parikh, D.3    Socher, R.4
  • 22
    • 85018917850 scopus 로고    scopus 로고
    • Hierarchical question-image co-attention for visual question answering
    • Jiasen Lu, Jianwei Yang, Dhruv Batra, and Devi Parikh. Hierarchical Question-Image Co-Attention for Visual Question Answering. In NIPS, 2016b.
    • (2016) NIPS
    • Lu, J.1    Yang, J.2    Batra, D.3    Parikh, D.4
  • 23
    • 85023777762 scopus 로고    scopus 로고
    • Learning online alignments with continuous rewards policy gradient
    • Yuping Luo, Chung-cheng Chiu, Navdeep Jaitly, and Ilya Sutskever. Learning Online Alignments with Continuous Rewards Policy Gradient. In ICASSP, 2017.
    • (2017) ICASSP
    • Luo, Y.1    Chiu, C.-C.2    Jaitly, N.3    Sutskever, I.4
  • 24
    • 84937822746 scopus 로고    scopus 로고
    • A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input
    • Mateusz Malinowski and Mario Fritz. A Multi-World Approach to Question Answering about Real-World Scenes based on Uncertain Input. In NIPS, 2014.
    • (2014) NIPS
    • Malinowski, M.1    Fritz, M.2
  • 26
    • 85021624882 scopus 로고    scopus 로고
    • Towards perspective-free object counting with deep learning
    • Daniel Oñoro-Rubio and Roberto J. López-Sastre. Towards perspective-free object counting with deep learning. In ECCV, 2016.
    • (2016) ECCV
    • Oñoro-Rubio, D.1    López-Sastre, R.J.2
  • 29
    • 84961289992 scopus 로고    scopus 로고
    • Glove: Global vectors for word representation
    • Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global Vectors for Word Representation. EMNLP, 2014.
    • (2014) EMNLP
    • Pennington, J.1    Socher, R.2    Manning, C.3
  • 30
    • 85044274041 scopus 로고    scopus 로고
    • End-to-end instance segmentation with recurrent attention
    • Mengye Ren and Richard S. Zemel. End-to-End Instance Segmentation with Recurrent Attention. In CVPR, 2017.
    • (2017) CVPR
    • Ren, M.1    Zemel, R.S.2
  • 31
    • 84965170394 scopus 로고    scopus 로고
    • Exploring models and data for image question answering
    • Mengye Ren, Ryan Kiros, and Richard Zemel. Exploring Models and Data for Image Question Answering. In NIPS, 2015a.
    • (2015) NIPS
    • Ren, M.1    Kiros, R.2    Zemel, R.3
  • 32
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In NIPS, 2015b.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 33
    • 85041911392 scopus 로고    scopus 로고
    • Self-critical Sequence Training for Image Captioning
    • Steven J. Rennie, Etienne Marcheret, Youssef Mroueh, Jarret Ross, and Vaibhava Goel. Self-critical Sequence Training for Image Captioning. In CVPR, 2017.
    • (2017) CVPR
    • Rennie, S.J.1    Marcheret, E.2    Mroueh, Y.3    Ross, J.4    Goel, V.5
  • 34
    • 84951956461 scopus 로고    scopus 로고
    • Learning to count with deep object features
    • Santi Segui, Oriol Pujol, and Jordi Vitria. Learning to count with deep object features. In CVPRW, 2015.
    • (2015) CVPRW
    • Segui, S.1    Pujol, O.2    Vitria, J.3
  • 35
    • 85047741987 scopus 로고    scopus 로고
    • Where to look: Focus regions for visual question answering
    • Kevin J. Shih, Saurabh Singh, and Derek Hoiem. Where To Look: Focus Regions for Visual Question Answering. In CVPR, 2015.
    • (2015) CVPR
    • Shih, K.J.1    Singh, S.2    Hoiem, D.3
  • 36
    • 84906925854 scopus 로고    scopus 로고
    • Grounded compositional semantics for finding and describing images with sentences
    • Richard Socher, Andrej Karpathy, Quoc V Le, Christopher D Manning, and Andrew Y Ng. Grounded Compositional Semantics for Finding and Describing Images with Sentences. In TACL, 2014.
    • (2014) TACL
    • Socher, R.1    Karpathy, A.2    Le, Q.V.3    Manning, C.D.4    Ng, A.Y.5
  • 38
    • 85071147167 scopus 로고    scopus 로고
    • Tips and tricks for visual question answering: Learnings from the 2017 challenge
    • Damien Teney, Peter Anderson, Xiaodong He, and Anton van den Hengel. Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge. In CVPR, 2017.
    • (2017) CVPR
    • Teney, D.1    Anderson, P.2    He, X.3    Van den Hengel, A.4
  • 40
    • 0000337576 scopus 로고
    • Simple statistical gradient-following methods for connectionist reinforcement learning
    • R J Williams. Simple statistical gradient-following methods for connectionist reinforcement learning. Machine Learning, 8:229–256, 1992.
    • (1992) Machine Learning , vol.8 , pp. 229-256
    • Williams, R.J.1
  • 41
    • 0041154467 scopus 로고
    • Function Optimization using Connectionist Reinforcement Learning Algorithms
    • Ronald J. Williams and Jing Peng. Function Optimization using Connectionist Reinforcement Learning Algorithms. Connection Science, 3(3):241–268, 1991.
    • (1991) Connection Science , vol.3 , Issue.3 , pp. 241-268
    • Williams, R.J.1    Peng, J.2
  • 42
    • 84999008900 scopus 로고    scopus 로고
    • Dynamic memory networks for visual and textual question answering
    • Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic Memory Networks for Visual and Textual Question Answering. In ICML, 2016.
    • (2016) ICML
    • Xiong, C.1    Merity, S.2    Socher, R.3
  • 43
    • 85035008367 scopus 로고    scopus 로고
    • Ask, attend and answer: Exploring question-guided spatial attention for visual question answering
    • Huijuan Xu and Kate Saenko. Ask, Attend and Answer: Exploring Question-Guided Spatial Attention for Visual Question Answering. In ECCV, 2015.
    • (2015) ECCV
    • Xu, H.1    Saenko, K.2
  • 44
    • 85067831524 scopus 로고    scopus 로고
    • Stacked attention networks for image question answering
    • Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked Attention Networks for Image Question Answering. In CVPR, 2015.
    • (2015) CVPR
    • Yang, Z.1    He, X.2    Gao, J.3    Deng, L.4    Smola, A.5
  • 45
    • 84959214343 scopus 로고    scopus 로고
    • Cross-scene crowd counting via deep convolutional neural networks
    • Cong Zhang, Hongsheng Li, Xiaogang Wang, and Xiaokang Yang. Cross-scene crowd counting via deep convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Zhang, C.1    Li, H.2    Wang, X.3    Yang, X.4
  • 48
    • 84990052104 scopus 로고    scopus 로고
    • Visual7W: Grounded question answering in images
    • Yuke Zhu, Oliver Groth, Michael Bernstein, and Li Fei-Fei. Visual7W: Grounded Question Answering in Images. In CVPR, 2015.
    • (2015) CVPR
    • Zhu, Y.1    Groth, O.2    Bernstein, M.3    Fei-Fei, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.