-
2
-
-
84988928206
-
-
Accessed: 2014-12-19
-
Chintala, Soumith. Convnet-benchmarks. https://github.com/soumith/ convnet-benchmarks, 2014. Accessed: 2014-12-19.
-
(2014)
Convnet-Benchmarks
-
-
Chintala, S.1
-
3
-
-
55349142218
-
Tensor rank and the ill-posedness of the best low-rank approximation problem
-
De Silva, Vin and Lim, Lek-Heng. Tensor rank and the ill-posedness of the best low-rank approximation problem. SIAM J. Matrix Anal. Appl., 30(3):1084–1127, 2008.
-
(2008)
SIAM J. Matrix Anal. Appl.
, vol.30
, Issue.3
, pp. 1084-1127
-
-
De Silva, V.1
Lim, L.-H.2
-
4
-
-
84877760312
-
Large scale distributed deep networks
-
Dean, Jeffrey, Corrado, Greg, Monga, Rajat, Chen, Kai, Devin, Matthieu, Mao, Mark, Senior, Andrew, Tucker, Paul, Yang, Ke, Le, Quoc V, et al. Large scale distributed deep networks. In Advances in Neural Information Processing Systems, pp. 1223–1231, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
Senior, A.7
Tucker, P.8
Yang, K.9
Le, Q.V.10
-
5
-
-
84919737644
-
-
arXiv preprint
-
Denton, Emily, Zaremba, Wojciech, Bruna, Joan, LeCun, Yann, and Fergus, Rob. Exploiting linear structure within convolutional networks for efficient evaluation. arXiv preprint arXiv:1404.0736, 2014.
-
(2014)
Exploiting Linear Structure within Convolutional Networks for Efficient Evaluation
-
-
Denton, E.1
Zaremba, W.2
Bruna, J.3
LeCun, Y.4
Fergus, R.5
-
6
-
-
84923471298
-
Large-scale FPGA-based convolutional networks
-
Farabet, Clément, LeCun, Yann, Kavukcuoglu, Koray, Culurciello, Eugenio, Martini, Berin, Akselrod, Polina, and Talay, Selcuk. Large-scale FPGA-based convolutional networks. Machine Learning on Very Large Data Sets, 2011.
-
(2011)
Machine Learning on Very Large Data Sets
-
-
Farabet, C.1
LeCun, Y.2
Kavukcuoglu, K.3
Culurciello, E.4
Martini, B.5
Akselrod, P.6
Talay, S.7
-
7
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
Glorot, Xavier and Bengio, Yoshua. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010, pp. 249–256, 2010.
-
(2010)
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2010, Chia Laguna Resort, Sardinia, Italy, May 13-15, 2010
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
9
-
-
84906517083
-
Deep features for text spotting
-
Springer
-
Jaderberg, Max, Vedaldi, Andrea, and Zisserman, Andrew. Deep features for text spotting. In Computer Vision–ECCV 2014, pp. 512–528. Springer, 2014b.
-
(2014)
Computer Vision–ECCV 2014
, pp. 512-528
-
-
Jaderberg, M.1
Vedaldi, A.2
Zisserman, A.3
-
10
-
-
84913555165
-
-
arXiv preprint
-
Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev, Sergey, Long, Jonathan, Girshick, Ross, Guadarrama, Sergio, and Darrell, Trevor. Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.7
Darrell, T.8
-
11
-
-
0036018642
-
On the best rank-1 approximation of higher-order super-symmetric tensors
-
Kofidis, Eleftherios and Regalia, Phillip A. On the best rank-1 approximation of higher-order super-symmetric tensors. SIAM J. Matrix Anal. Appl., 23(3):863–884, 2002.
-
(2002)
SIAM J. Matrix Anal. Appl.
, vol.23
, Issue.3
, pp. 863-884
-
-
Kofidis, E.1
Regalia, P.A.2
-
12
-
-
68649096448
-
Tensor decompositions and applications
-
Kolda, T. G. and Bader, B. W. Tensor decompositions and applications. SIAM Rev., 51(3):455–500, 2009.
-
(2009)
SIAM Rev
, vol.51
, Issue.3
, pp. 455-500
-
-
Kolda, T.G.1
Bader, B.W.2
-
13
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pp. 1097–1105, 2012.
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
14
-
-
0000359337
-
Backpropagation applied to handwritten zip code recognition
-
LeCun, Yann, Boser, Bernhard, Denker, John S, Henderson, Donnie, Howard, Richard E, Hubbard, Wayne, and Jackel, Lawrence D. Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.
-
(1989)
Neural Computation
, vol.1
, Issue.4
, pp. 541-551
-
-
LeCun, Y.1
Boser, B.2
Denker, J.S.3
Henderson, D.4
Howard, R.E.5
Hubbard, W.6
Jackel, L.D.7
-
17
-
-
84887353151
-
Learning separable filters
-
Ieee
-
Rigamonti, Roberto, Sironi, Amos, Lepetit, Vincent, and Fua, Pascal. Learning separable filters. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pp. 2754–2761. Ieee, 2013.
-
(2013)
Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on
, pp. 2754-2761
-
-
Rigamonti, R.1
Sironi, A.2
Lepetit, V.3
Fua, P.4
-
18
-
-
84933585162
-
Very deep convolutional networks for large-scale image recognition
-
Simonyan, Karen and Zisserman, Andrew. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556, 2014. URL http://arxiv.org/abs/1409.1556.
-
(2014)
CoRR
-
-
Simonyan, K.1
Zisserman, A.2
-
20
-
-
77955559162
-
Subtracting a best rank-1 approximation may increase tensor rank
-
Stegeman, Alwin and Comon, Pierre. Subtracting a best rank-1 approximation may increase tensor rank. Linear Algebra Appl., 433(7):1276–1300, 2010.
-
(2010)
Linear Algebra Appl
, vol.433
, Issue.7
, pp. 1276-1300
-
-
Stegeman, A.1
Comon, P.2
-
21
-
-
84911198048
-
DeepFace: Closing the gap to human-level performance in face verification
-
IEEE
-
Taigman, Yaniv, Yang, Ming, Ranzato, Marc’Aurelio, and Wolf, Lior. Deepface: Closing the gap to human-level performance in face verification. In Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 1701–1708. IEEE, 2014.
-
(2014)
Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
, pp. 1701-1708
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
22
-
-
30144444694
-
A comparison of algorithms for fitting the parafac model
-
Tomasi, Giorgio and Bro, Rasmus. A comparison of algorithms for fitting the parafac model. Comp. Stat. Data An., 50(7):1700–1734, 2006.
-
(2006)
Comp. Stat. Data An.
, vol.50
, Issue.7
, pp. 1700-1734
-
-
Tomasi, G.1
Bro, R.2
|