메뉴 건너뛰기




Volumn , Issue , 2013, Pages 2754-2761

Learning separable filters

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE FEATURES; LEARNING APPROACH; LEARNING FILTERS; LINEAR COMBINATIONS; LINEAR STRUCTURES; OVER-COMPLETE DICTIONARIES; SPARSE IMAGE REPRESENTATIONS; STATE-OF-THE-ART METHODS;

EID: 84887353151     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2013.355     Document Type: Conference Paper
Times cited : (266)

References (39)
  • 1
    • 79951898361 scopus 로고    scopus 로고
    • A scalable optimization approach for fitting canonical tensor decompositions
    • E. Acar, D. M. Dunlavy, and T. G. Kolda. A Scalable Optimization Approach for Fitting Canonical Tensor Decompositions. Journal of Chemometrics, 2011.
    • (2011) Journal of Chemometrics
    • Acar, E.1    Dunlavy, D.M.2    Kolda, T.G.3
  • 3
    • 84860608998 scopus 로고    scopus 로고
    • Optimization with sparsity-inducing penalties
    • Technical report
    • F. Bach, R. Jenatton, J. Mairal, and G. Obozienski. Optimization with Sparsity-Inducing Penalties. Technical report, INRIA, 2011.
    • (2011) INRIA
    • Bach, F.1    Jenatton, R.2    Mairal, J.3    Obozienski, G.4
  • 8
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • A. Coates and A. Ng. The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization. In ICML, 2011.
    • (2011) ICML
    • Coates, A.1    Ng, A.2
  • 9
    • 51949083563 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad and M. Aharon. Image Denoising via Sparse and Redundant Representations Over Learned Dictionaries. TIP, 2006.
    • (2006) IntIP
    • Elad, M.1    Aharon, M.2
  • 11
    • 0034853839 scopus 로고    scopus 로고
    • A rank minimization heuristic with application to minimum order system approximation
    • M. Fazel, H. Hindi, and S. Boyd. A Rank Minimization Heuristic with Application to Minimum Order System Approximation. In ACC, 2001.
    • (2001) ACC
    • Fazel, M.1    Hindi, H.2    Boyd, S.3
  • 12
    • 0026221555 scopus 로고
    • The design and use of steerable filters
    • W. Freeman and E. Adelson. The Design and Use of Steerable Filters. PAMI, 1991.
    • (1991) PAMI
    • Freeman, W.1    Adelson, E.2
  • 13
    • 70450195041 scopus 로고    scopus 로고
    • Learning rotational features for filament detection
    • G. Gonzalez, F. Fleuret, and P. Fua. Learning Rotational Features for Filament Detection. In CVPR, 2009.
    • (2009) CVPR
    • Gonzalez, G.1    Fleuret, F.2    Fua, P.3
  • 14
    • 84989509417 scopus 로고
    • Constanttime filtering by singular value decomposition
    • C. Gotsman. ConstantTime Filtering by Singular Value Decomposition. Computer Graphics Forum, 1994.
    • (1994) Computer Graphics Forum
    • Gotsman, C.1
  • 15
    • 33745944718 scopus 로고    scopus 로고
    • Sparse image coding using a 3d non-negative tensor factorization
    • T. Hazan, S. Polak, and A. Shashua. Sparse Image Coding Using a 3D Non-Negative Tensor Factorization. In ICCV, 2005.
    • (2005) ICCV
    • Hazan, T.1    Polak, S.2    Shashua, A.3
  • 17
    • 0033623974 scopus 로고    scopus 로고
    • Location blood vessels in retinal images by piecewise threshold probing of a matched filter response
    • A. Hoover, V. Kouznetsova, and M. Goldbaum. Location Blood Vessels in Retinal Images by Piecewise Threshold Probing of a Matched Filter Response. TMI, 2000.
    • (2000) IntMI
    • Hoover, A.1    Kouznetsova, V.2    Goldbaum, M.3
  • 19
    • 68649096448 scopus 로고    scopus 로고
    • Tensor decompositions and applications
    • T. G. Kolda and B. W. Bader. Tensor Decompositions and Applications. SIAM Review, 2009.
    • (2009) SIAM Review
    • Kolda, T.G.1    Bader, B.W.2
  • 20
    • 70350339005 scopus 로고    scopus 로고
    • Three dimensional curvilinear structure detection using optimally oriented flux
    • M. Law and A. Chung. Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux. In ECCV, 2008.
    • (2008) ECCV
    • Law, M.1    Chung, A.2
  • 21
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document Recognition. PIEEE, 1998.
    • (1998) PIEEE
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 23
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations. In ICML, 2009.
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.4
  • 25
    • 85059740534 scopus 로고    scopus 로고
    • Simplifying convnets for fast learning
    • F. Mamalet and C. Garcia. Simplifying Convnets for Fast Learning. In ICANN, 2012.
    • (2012) ICANN
    • Mamalet, F.1    Garcia, C.2
  • 26
    • 84055175817 scopus 로고    scopus 로고
    • Learning to detect roads in high-resolution aerial images
    • V. Mnih and G. Hinton. Learning to Detect Roads in High-Resolution Aerial Images. In ECCV, 2010.
    • (2010) ECCV
    • Mnih, V.1    Hinton, G.2
  • 27
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by v1
    • B. Olshausen and D. Field. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vision Research, 1997.
    • (1997) Vision Research
    • Olshausen, B.1    Field, D.2
  • 28
    • 0029309283 scopus 로고
    • Deformable kernels for early vision
    • P. Perona. Deformable Kernels for Early Vision. PAMI, 1995.
    • (1995) PAMI
    • Perona, P.1
  • 30
    • 80052904079 scopus 로고    scopus 로고
    • Are sparse representations really relevant for image classification
    • R. Rigamonti, M. Brown, and V. Lepetit. Are Sparse Representations Really Relevant for Image Classification? In CVPR, 2011.
    • (2011) CVPR
    • Rigamonti, R.1    Brown, M.2    Lepetit, V.3
  • 32
    • 78349258863 scopus 로고    scopus 로고
    • Double sparsity: Learning sparse dictionaries for sparse signal approximation
    • R. Rubinstein, M. Zibulevsky, and M. Elad. Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation. SP, 2010.
    • (2010) SP
    • Rubinstein, R.1    Zibulevsky, M.2    Elad, M.3
  • 33
    • 84883843470 scopus 로고    scopus 로고
    • Automatic centerline extraction of irregular tubular structures using probability volumes from multiphoton imaging
    • A. Santamaŕ?a-Pang, C. Colbert, P. Saggau, and I. Kakadiaris. Automatic Centerline Extraction of Irregular Tubular Structures Using Probability Volumes from Multiphoton Imaging. In MICCAI, 2007.
    • (2007) MICCAI
    • Santamará-Pang, A.1    Colbert, C.2    Saggau, P.3    Kakadiaris, I.4
  • 37
    • 0043002932 scopus 로고    scopus 로고
    • Multilinear analysis of image ensembles: Tensorfaces
    • M. A. O. Vasilescu and D. Terzopoulos. Multilinear Analysis of Image Ensembles: Tensorfaces. In ECCV, 2002.
    • (2002) ECCV
    • Vasilescu, M.A.O.1    Terzopoulos, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.