-
1
-
-
79951898361
-
A scalable optimization approach for fitting canonical tensor decompositions
-
E. Acar, D. M. Dunlavy, and T. G. Kolda. A Scalable Optimization Approach for Fitting Canonical Tensor Decompositions. Journal of Chemometrics, 2011.
-
(2011)
Journal of Chemometrics
-
-
Acar, E.1
Dunlavy, D.M.2
Kolda, T.G.3
-
3
-
-
84860608998
-
Optimization with sparsity-inducing penalties
-
Technical report
-
F. Bach, R. Jenatton, J. Mairal, and G. Obozienski. Optimization with Sparsity-Inducing Penalties. Technical report, INRIA, 2011.
-
(2011)
INRIA
-
-
Bach, F.1
Jenatton, R.2
Mairal, J.3
Obozienski, G.4
-
8
-
-
80053442434
-
The importance of encoding versus training with sparse coding and vector quantization
-
A. Coates and A. Ng. The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization. In ICML, 2011.
-
(2011)
ICML
-
-
Coates, A.1
Ng, A.2
-
9
-
-
51949083563
-
Image denoising via sparse and redundant representations over learned dictionaries
-
M. Elad and M. Aharon. Image Denoising via Sparse and Redundant Representations Over Learned Dictionaries. TIP, 2006.
-
(2006)
IntIP
-
-
Elad, M.1
Aharon, M.2
-
10
-
-
77956000290
-
Hardware accelerated convolutional neural networks for synthetic vision systems
-
C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello. Hardware Accelerated Convolutional Neural Networks for Synthetic Vision Systems. In International Symposium on Circuits and Systems, 2010.
-
(2010)
International Symposium on Circuits and Systems
-
-
Farabet, C.1
Martini, B.2
Akselrod, P.3
Talay, S.4
Lecun, Y.5
Culurciello, E.6
-
11
-
-
0034853839
-
A rank minimization heuristic with application to minimum order system approximation
-
M. Fazel, H. Hindi, and S. Boyd. A Rank Minimization Heuristic with Application to Minimum Order System Approximation. In ACC, 2001.
-
(2001)
ACC
-
-
Fazel, M.1
Hindi, H.2
Boyd, S.3
-
12
-
-
0026221555
-
The design and use of steerable filters
-
W. Freeman and E. Adelson. The Design and Use of Steerable Filters. PAMI, 1991.
-
(1991)
PAMI
-
-
Freeman, W.1
Adelson, E.2
-
13
-
-
70450195041
-
Learning rotational features for filament detection
-
G. Gonzalez, F. Fleuret, and P. Fua. Learning Rotational Features for Filament Detection. In CVPR, 2009.
-
(2009)
CVPR
-
-
Gonzalez, G.1
Fleuret, F.2
Fua, P.3
-
14
-
-
84989509417
-
Constanttime filtering by singular value decomposition
-
C. Gotsman. ConstantTime Filtering by Singular Value Decomposition. Computer Graphics Forum, 1994.
-
(1994)
Computer Graphics Forum
-
-
Gotsman, C.1
-
15
-
-
33745944718
-
Sparse image coding using a 3d non-negative tensor factorization
-
T. Hazan, S. Polak, and A. Shashua. Sparse Image Coding Using a 3D Non-Negative Tensor Factorization. In ICCV, 2005.
-
(2005)
ICCV
-
-
Hazan, T.1
Polak, S.2
Shashua, A.3
-
17
-
-
0033623974
-
Location blood vessels in retinal images by piecewise threshold probing of a matched filter response
-
A. Hoover, V. Kouznetsova, and M. Goldbaum. Location Blood Vessels in Retinal Images by Piecewise Threshold Probing of a Matched Filter Response. TMI, 2000.
-
(2000)
IntMI
-
-
Hoover, A.1
Kouznetsova, V.2
Goldbaum, M.3
-
18
-
-
85162460675
-
Learning convolutional feature hierarchies for visual recognition
-
K. Kavukcuoglu, P. Sermanet, Y.-L. Boureau, K. Gregor, M. Mathieu, and Y. LeCun. Learning Convolutional Feature Hierarchies for Visual Recognition. In NIPS, 2010.
-
(2010)
NIPS
-
-
Kavukcuoglu, K.1
Sermanet, P.2
Boureau, Y.-L.3
Gregor, K.4
Mathieu, M.5
Lecun, Y.6
-
19
-
-
68649096448
-
Tensor decompositions and applications
-
T. G. Kolda and B. W. Bader. Tensor Decompositions and Applications. SIAM Review, 2009.
-
(2009)
SIAM Review
-
-
Kolda, T.G.1
Bader, B.W.2
-
20
-
-
70350339005
-
Three dimensional curvilinear structure detection using optimally oriented flux
-
M. Law and A. Chung. Three Dimensional Curvilinear Structure Detection Using Optimally Oriented Flux. In ECCV, 2008.
-
(2008)
ECCV
-
-
Law, M.1
Chung, A.2
-
21
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-Based Learning Applied to Document Recognition. PIEEE, 1998.
-
(1998)
PIEEE
-
-
Lecun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
23
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
H. Lee, R. Grosse, R. Ranganath, and A. Ng. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations. In ICML, 2009.
-
(2009)
ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.4
-
24
-
-
77952739016
-
Non-local sparse models for image restoration
-
J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-Local Sparse Models for Image Restoration. In ICCV, 2009.
-
(2009)
ICCV
-
-
Mairal, J.1
Bach, F.2
Ponce, J.3
Sapiro, G.4
Zisserman, A.5
-
25
-
-
85059740534
-
Simplifying convnets for fast learning
-
F. Mamalet and C. Garcia. Simplifying Convnets for Fast Learning. In ICANN, 2012.
-
(2012)
ICANN
-
-
Mamalet, F.1
Garcia, C.2
-
26
-
-
84055175817
-
Learning to detect roads in high-resolution aerial images
-
V. Mnih and G. Hinton. Learning to Detect Roads in High-Resolution Aerial Images. In ECCV, 2010.
-
(2010)
ECCV
-
-
Mnih, V.1
Hinton, G.2
-
27
-
-
0030779611
-
Sparse coding with an overcomplete basis set: A strategy employed by v1
-
B. Olshausen and D. Field. Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vision Research, 1997.
-
(1997)
Vision Research
-
-
Olshausen, B.1
Field, D.2
-
28
-
-
0029309283
-
Deformable kernels for early vision
-
P. Perona. Deformable Kernels for Early Vision. PAMI, 1995.
-
(1995)
PAMI
-
-
Perona, P.1
-
30
-
-
80052904079
-
Are sparse representations really relevant for image classification
-
R. Rigamonti, M. Brown, and V. Lepetit. Are Sparse Representations Really Relevant for Image Classification? In CVPR, 2011.
-
(2011)
CVPR
-
-
Rigamonti, R.1
Brown, M.2
Lepetit, V.3
-
31
-
-
84875207661
-
Filter learning for linear structure segmentation
-
Technical report
-
R. Rigamonti, E. Türetken, G. González, P. Fua, and V. Lepetit. Filter Learning for Linear Structure Segmentation. Technical report, EPFL, 2011.
-
(2011)
EPFL
-
-
Rigamonti, R.1
Türetken, E.2
González, G.3
Fua, P.4
Lepetit, V.5
-
32
-
-
78349258863
-
Double sparsity: Learning sparse dictionaries for sparse signal approximation
-
R. Rubinstein, M. Zibulevsky, and M. Elad. Double Sparsity: Learning Sparse Dictionaries for Sparse Signal Approximation. SP, 2010.
-
(2010)
SP
-
-
Rubinstein, R.1
Zibulevsky, M.2
Elad, M.3
-
33
-
-
84883843470
-
Automatic centerline extraction of irregular tubular structures using probability volumes from multiphoton imaging
-
A. Santamaŕ?a-Pang, C. Colbert, P. Saggau, and I. Kakadiaris. Automatic Centerline Extraction of Irregular Tubular Structures Using Probability Volumes from Multiphoton Imaging. In MICCAI, 2007.
-
(2007)
MICCAI
-
-
Santamará-Pang, A.1
Colbert, C.2
Saggau, P.3
Kakadiaris, I.4
-
34
-
-
1942454910
-
Ridge based vessel segmentation in color images of the retina
-
J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken. Ridge Based Vessel Segmentation in Color Images of the Retina. TMI, 2004.
-
(2004)
IntMI
-
-
Staal, J.1
Abramoff, M.2
Niemeijer, M.3
Viergever, M.4
Van Ginneken, B.5
-
37
-
-
0043002932
-
Multilinear analysis of image ensembles: Tensorfaces
-
M. A. O. Vasilescu and D. Terzopoulos. Multilinear Analysis of Image Ensembles: Tensorfaces. In ECCV, 2002.
-
(2002)
ECCV
-
-
Vasilescu, M.A.O.1
Terzopoulos, D.2
-
38
-
-
77952717202
-
Sparse representation for computer vision and pattern recognition
-
J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan. Sparse Representation for Computer Vision and Pattern Recognition. Proc. IEEE, 2010.
-
(2010)
Proc. IEEE
-
-
Wright, J.1
Ma, Y.2
Mairal, J.3
Sapiro, G.4
Huang, T.S.5
Yan, S.6
|