메뉴 건너뛰기




Volumn , Issue , 2015, Pages

Zero-bias autoencoders and the benefits of co-adapting features

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL ACTIVATION;

EID: 85083951340     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (25)

References (31)
  • 3
  • 7
    • 84867720412 scopus 로고    scopus 로고
    • Improving neural networks by preventing co-adaptation of feature detectors
    • Hinton, Geoffrey E., Srivastava, Nitish, Krizhevsky, Alex, Sutskever, Ilya, and Salakhutdinov, Ruslan. Improving neural networks by preventing co-adaptation of feature detectors. CoRR, abs/1207.0580, 2012.
    • (2012) CoRR
    • Hinton, G.E.1    Srivastava, N.2    Krizhevsky, A.3    Sutskever, I.4    Salakhutdinov, R.5
  • 15
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • Le, Q.V., Zou, W.Y., Yeung, S.Y., and Ng, A.Y. Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis. In CVPR, 2011.
    • (2011) CVPR
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 17
    • 84970975063 scopus 로고    scopus 로고
    • K-sparse autoencoders
    • Makhzani, Alireza and Frey, Brendan. k-sparse autoencoders. CoRR, abs/1312.5663, 2013.
    • (2013) CoRR
    • Makhzani, A.1    Frey, B.2
  • 20
    • 84856650170 scopus 로고    scopus 로고
    • Gradient-based learning of higher-order image features
    • Memisevic, Roland. Gradient-based learning of higher-order image features. In ICCV, 2011.
    • (2011) ICCV
    • Memisevic, R.1
  • 21
    • 34948828582 scopus 로고    scopus 로고
    • Unsupervised learning of image transformations
    • Memisevic, Roland and Hinton, Geoffrey. Unsupervised learning of image transformations. In CVPR, 2007.
    • (2007) CVPR
    • Memisevic, R.1    Hinton, G.2
  • 22
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order boltzmann machines
    • June
    • Memisevic, Roland and Hinton, Geoffrey E. Learning to represent spatial transformations with factored higher-order boltzmann machines. Neural Computation, 22(6):1473–1492, June 2010. ISSN 0899-7667.
    • (2010) Neural Computation , vol.22 , Issue.6 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.E.2
  • 26
    • 85083950242 scopus 로고    scopus 로고
    • On the number of inference regions of deep feed forward networks with piece-wise linear activations
    • Razvan Pascanu, Guido Montufar, Yoshua Bengio. On the number of inference regions of deep feed forward networks with piece-wise linear activations. CoRR, arXiv:1312.6098, 2014.
    • (2014) CoRR
    • Pascanu, R.1    Montufar, G.2    Bengio, Y.3
  • 27
    • 80053460450 scopus 로고    scopus 로고
    • Contractive auto-encoders: Explicit invariance during feature extraction
    • Rifai, Salah, Vincent, Pascal, Muller, Xavier, Glorot, Xavier, and Bengio, Yoshua. Contractive Auto-Encoders: Explicit Invariance During Feature Extraction. In ICML, 2011.
    • (2011) ICML
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 28
    • 51849128608 scopus 로고    scopus 로고
    • Sparse coding via thresholding and local competition in neural circuits
    • Rozell, Christopher J, Johnson, Don H, Baraniuk, Richard G, and Olshausen, Bruno A. Sparse coding via thresholding and local competition in neural circuits. Neural computation, 20(10):2526–2563, 2008.
    • (2008) Neural Computation , vol.20 , Issue.10 , pp. 2526-2563
    • Rozell, C.J.1    Johnson, D.H.2    Baraniuk, R.G.3    Olshausen, B.A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.