메뉴 건너뛰기




Volumn 43, Issue , 2020, Pages 1-66

Markov chain Monte Carlo methods: Theory and practice

Author keywords

Bayesian statistics; Convergence; Lyapunov conditions; Metropolis Hastings; Mixing time

Indexed keywords


EID: 85083896134     PISSN: 01697161     EISSN: None     Source Type: Book Series    
DOI: 10.1016/bs.host.2019.06.001     Document Type: Chapter
Times cited : (10)

References (59)
  • 1
    • 84890140417 scopus 로고    scopus 로고
    • Bayesian multimodel inference by RJMCMC: a Gibbs sampling approach
    • Barker, R.J., Link, W.A., Bayesian multimodel inference by RJMCMC: a Gibbs sampling approach. Am. Stat. 67:3 (2013), 150–156.
    • (2013) Am. Stat. , vol.67 , Issue.3 , pp. 150-156
    • Barker, R.J.1    Link, W.A.2
  • 2
    • 0002275621 scopus 로고
    • MCMC for nonlinear hierarchical models
    • W.R. Gilks S. Richardson D.J. Spiegelhalter Chapman and Hall London
    • Bennett, J.E., Racine-Poon, A., Wakefield, J.C., MCMC for nonlinear hierarchical models. Gilks, W.R., Richardson, S., Spiegelhalter, D.J., (eds.) Markov Chain Monte Carlo in Practice, 1995, Chapman and Hall, London, 339–357.
    • (1995) Markov Chain Monte Carlo in Practice , pp. 339-357
    • Bennett, J.E.1    Racine-Poon, A.2    Wakefield, J.C.3
  • 3
    • 0004311217 scopus 로고
    • Time Series Analysis: Forecasting and Control
    • Prentice Hall New York
    • Box, G.E.P., Jenkins, G.M., Reinsel, G.C., Time Series Analysis: Forecasting and Control. 1994, Prentice Hall, New York.
    • (1994)
    • Box, G.E.P.1    Jenkins, G.M.2    Reinsel, G.C.3
  • 4
    • 0042759311 scopus 로고
    • An iterative Monte Carlo method for nonconjugate Bayesian analysis
    • Carlin, B.P., Gelfand, A.E., An iterative Monte Carlo method for nonconjugate Bayesian analysis. Stat. Comput. 1 (1991), 119–128.
    • (1991) Stat. Comput. , vol.1 , pp. 119-128
    • Carlin, B.P.1    Gelfand, A.E.2
  • 5
    • 0011716069 scopus 로고    scopus 로고
    • Markov chain Monte Carlo Methods for generalized stochastic volatility models
    • Chib, S., Nardari, F., Shephard, N., Markov chain Monte Carlo Methods for generalized stochastic volatility models. J. Econ. 108 (1998), 281–316.
    • (1998) J. Econ. , vol.108 , pp. 281-316
    • Chib, S.1    Nardari, F.2    Shephard, N.3
  • 6
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: a comparative review
    • Cowles, M.K., Carlin, B.P., Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91 (1996), 883–904.
    • (1996) J. Am. Stat. Assoc. , vol.91 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 7
    • 0042376950 scopus 로고    scopus 로고
    • A simulation-based approach to convergence rates for Markov chain Monte Carlo algorithms
    • Cowles, M.K., Rosenthal, J.S., A simulation-based approach to convergence rates for Markov chain Monte Carlo algorithms. Stat. Comput. 8 (1998), 115–124.
    • (1998) Stat. Comput. , vol.8 , pp. 115-124
    • Cowles, M.K.1    Rosenthal, J.S.2
  • 8
    • 84936452506 scopus 로고
    • Acceptance-rejection techniques for sampling from the gamma and beta distributions
    • Technical Report 83, Research. Office of Naval
    • Dieter, U., Ahrens, J., Acceptance-rejection techniques for sampling from the gamma and beta distributions. 1974 Technical Report 83, Research. Office of Naval.
    • (1974)
    • Dieter, U.1    Ahrens, J.2
  • 10
    • 85171926576 scopus 로고    scopus 로고
    • RJMCMC: reversible jump MCMC using Post-Processing-R Package version 0.4.3
    • Gelling, N., Schofield, M.R., Barker, R.J., RJMCMC: reversible jump MCMC using Post-Processing-R Package version 0.4.3. 2018 https://cran.r-project.org/web/packages/rjmcmc/rjmcmc.pdf.
    • (2018)
    • Gelling, N.1    Schofield, M.R.2    Barker, R.J.3
  • 11
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., Rubin, D.B., Inference from iterative simulation using multiple sequences. Stat. Sci. 7 (1992), 457–511.
    • (1992) Stat. Sci. , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 12
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random walk Metropolis algorithms
    • Gelman, A., Gilks, W.R., Roberts, G.O., Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann. Appl. Probab. 7:1 (1997), 110–120.
    • (1997) Ann. Appl. Probab. , vol.7 , Issue.1 , pp. 110-120
    • Gelman, A.1    Gilks, W.R.2    Roberts, G.O.3
  • 13
    • 0004012196 scopus 로고    scopus 로고
    • Bayesian Data Analysis
    • third ed. CRC Press, Taylor and Francis Group Boca Raton, FL
    • Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B., Bayesian Data Analysis. third ed., 2014, CRC Press, Taylor and Francis Group, Boca Raton, FL.
    • (2014)
    • Gelman, A.1    Carlin, J.B.2    Stern, H.S.3    Dunson, D.B.4    Vehtari, A.5    Rubin, D.B.6
  • 14
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and Bayesian restoration of images
    • Geman, S., Geman, D., Stochastic relaxation, Gibbs distributions, and Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6 (1984), 721–741.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 15
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • J.M. Bernardo J. Berger A.P. Dawid A.F.M. Smith Oxford University Press Oxford, UK
    • Geweke, J., Evaluating the accuracy of sampling-based approaches to calculating posterior moments. Bernardo, J.M., Berger, J., Dawid, A.P., Smith, A.F.M., (eds.) Bayesian Statistics 4, 1992, Oxford University Press, Oxford, UK, 169–193.
    • (1992) Bayesian Statistics 4 , pp. 169-193
    • Geweke, J.1
  • 16
    • 0001422224 scopus 로고
    • Derivative-free adaptive rejection sampling for Gibbs sampling
    • J.M. Bernardo J. Berger A.P. Dawid A.F.M. Smith Oxford University Press Oxford, UK
    • Gilks, W.R., Derivative-free adaptive rejection sampling for Gibbs sampling. Bernardo, J.M., Berger, J., Dawid, A.P., Smith, A.F.M., (eds.) Bayesian Statistics 4, 1992, Oxford University Press, Oxford, UK.
    • (1992) Bayesian Statistics 4
    • Gilks, W.R.1
  • 17
    • 0000324169 scopus 로고
    • Adaptive rejection sampling for Gibbs samplers
    • Gilks, W.R., Wild, P., Adaptive rejection sampling for Gibbs samplers. Appl. Stat. 41:2 (1992), 337–348.
    • (1992) Appl. Stat. , vol.41 , Issue.2 , pp. 337-348
    • Gilks, W.R.1    Wild, P.2
  • 18
    • 0003860037 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo in Practice
    • CRC Press, Taylor and Francis Group Boca Raton, FL
    • Gilks, W.R., Richardson, S., Spiegelhalter, D.J., Markov Chain Monte Carlo in Practice. 1996, CRC Press, Taylor and Francis Group, Boca Raton, FL.
    • (1996)
    • Gilks, W.R.1    Richardson, S.2    Spiegelhalter, D.J.3
  • 19
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green, P.J., Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82:4 (1995), 711–732.
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 711-732
    • Green, P.J.1
  • 20
    • 84918542363 scopus 로고    scopus 로고
    • Reversible jump MCMC
    • Green, P.J., Hastie, D.I., Reversible jump MCMC. Genetics 155:3 (2009), 1391–1403.
    • (2009) Genetics , vol.155 , Issue.3 , pp. 1391-1403
    • Green, P.J.1    Hastie, D.I.2
  • 21
    • 77956890234 scopus 로고
    • Monte Carlo sampling using Markov chains and their application
    • Hastings, W., Monte Carlo sampling using Markov chains and their application. Biometrika 57 (1970), 97–109.
    • (1970) Biometrika , vol.57 , pp. 97-109
    • Hastings, W.1
  • 22
    • 0020850136 scopus 로고
    • Simulation run length control in the presence of an initial transient
    • Heidelberger, P., Welch, P.D., Simulation run length control in the presence of an initial transient. Oper. Res. 31 (1983), 1109–1144.
    • (1983) Oper. Res. , vol.31 , pp. 1109-1144
    • Heidelberger, P.1    Welch, P.D.2
  • 23
    • 1542469706 scopus 로고    scopus 로고
    • Bayesian model selection in finite mixtures by marginal density decompositions
    • Ishwaran, H., James, L.F., Sun, J., Bayesian model selection in finite mixtures by marginal density decompositions. J. Am. Stat. Assoc. 96 (2001), 1316–1332.
    • (2001) J. Am. Stat. Assoc. , vol.96 , pp. 1316-1332
    • Ishwaran, H.1    James, L.F.2    Sun, J.3
  • 24
    • 0001562199 scopus 로고    scopus 로고
    • Geometric ergodicity of Metropolis algorithms
    • Jarner, S.F., Hansen, E., Geometric ergodicity of Metropolis algorithms. Stoch. Process. Appl. 85 (2000), 341–361.
    • (2000) Stoch. Process. Appl. , vol.85 , pp. 341-361
    • Jarner, S.F.1    Hansen, E.2
  • 25
    • 35348968551 scopus 로고    scopus 로고
    • Continuous contour Monte Carlo for marginal density estimation with an application to a spatial statistical model
    • Liang, F., Continuous contour Monte Carlo for marginal density estimation with an application to a spatial statistical model. J. Comput. Graph. Stat. 16:3 (2007), 608–632.
    • (2007) J. Comput. Graph. Stat. , vol.16 , Issue.3 , pp. 608-632
    • Liang, F.1
  • 27
    • 0003637131 scopus 로고    scopus 로고
    • Markov Chains and Stochastic Stability
    • second ed. Springer-Verlag London
    • Meyn, S.P., Tweedie, R.L., Markov Chains and Stochastic Stability. second ed., 2005, Springer-Verlag, London.
    • (2005)
    • Meyn, S.P.1    Tweedie, R.L.2
  • 28
    • 0003898654 scopus 로고    scopus 로고
    • Annealed importance sampling
    • University of Toronto Department of Statistics Technical Report
    • Neal, R.M., Annealed importance sampling. 1998, University of Toronto Department of Statistics Technical Report.
    • (1998)
    • Neal, R.M.1
  • 29
    • 1642370803 scopus 로고    scopus 로고
    • Slice sampling
    • Neal, R.M., Slice sampling. Ann. Stat. 31:3 (2003), 705–767.
    • (2003) Ann. Stat. , vol.31 , Issue.3 , pp. 705-767
    • Neal, R.M.1
  • 30
    • 84950434808 scopus 로고
    • Adaptive importance sampling in Monte Carlo integration
    • Purdue University Department of Statistics Technical Report
    • Oh, M., Berger, J.O., Adaptive importance sampling in Monte Carlo integration. 1989, Purdue University Department of Statistics Technical Report.
    • (1989)
    • Oh, M.1    Berger, J.O.2
  • 31
    • 85025833700 scopus 로고    scopus 로고
    • Reversible jump Markov chain Monte Carlo algorithm for Bayesian variable selection in logistic mixed models
    • Pan, J., Lee, M., Tsai, M., Reversible jump Markov chain Monte Carlo algorithm for Bayesian variable selection in logistic mixed models. Commun. Stat. Simul. Comput. 47:8 (2017), 2234–2247.
    • (2017) Commun. Stat. Simul. Comput. , vol.47 , Issue.8 , pp. 2234-2247
    • Pan, J.1    Lee, M.2    Tsai, M.3
  • 32
    • 85171922647 scopus 로고    scopus 로고
    • ars: adaptive rejection sampling-R package version 0.6
    • Perez Rodriguez, P., ars: adaptive rejection sampling-R package version 0.6. 2018 https://CRAN.R-project.org/package=ars.
    • (2018)
    • Perez Rodriguez, P.1
  • 33
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler?
    • J.M. Bernardo J. Berger A.P. Dawid A.F.M. Smith Oxford University Press Oxford, U.K
    • Raftery, A.E., Lewis, S., How many iterations in the Gibbs sampler?. Bernardo, J.M., Berger, J., Dawid, A.P., Smith, A.F.M., (eds.) Bayesian Statistics 4, 1992, Oxford University Press, Oxford, U.K, 763–773.
    • (1992) Bayesian Statistics 4 , pp. 763-773
    • Raftery, A.E.1    Lewis, S.2
  • 34
    • 0004007880 scopus 로고
    • Stochastic Simulation
    • Wiley New York
    • Ripley, B.D., Stochastic Simulation. 1987, Wiley, New York.
    • (1987)
    • Ripley, B.D.1
  • 35
    • 0000940729 scopus 로고
    • Facilitating the Gibbs sampler: the Gibbs stopper and the Griddy-Gibbs sampler
    • Ritter, C., Tanner, M.A., Facilitating the Gibbs sampler: the Gibbs stopper and the Griddy-Gibbs sampler. J. Am. Stat. Assoc. 82 (1992), 861–868.
    • (1992) J. Am. Stat. Assoc. , vol.82 , pp. 861-868
    • Ritter, C.1    Tanner, M.A.2
  • 36
    • 0000569335 scopus 로고
    • Convergence diagnostics of the Gibbs sampler
    • J.M. Bernardo J. Berger A.P. Dawid A.F.M. Smith Oxford University Press Oxford, UK
    • Roberts, G.O., Convergence diagnostics of the Gibbs sampler. Bernardo, J.M., Berger, J., Dawid, A.P., Smith, A.F.M., (eds.) Bayesian Statistics 4, 1992, Oxford University Press, Oxford, UK, 775–782.
    • (1992) Bayesian Statistics 4 , pp. 775-782
    • Roberts, G.O.1
  • 38
    • 33746388444 scopus 로고    scopus 로고
    • Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms
    • Roberts, G.O., Tweedie, R.L., Geometric convergence and central limit theorems for multidimensional Hastings and Metropolis algorithms. Biometrika 83:1 (1996), 95–110.
    • (1996) Biometrika , vol.83 , Issue.1 , pp. 95-110
    • Roberts, G.O.1    Tweedie, R.L.2
  • 39
    • 0031285157 scopus 로고    scopus 로고
    • Weak convergence and optimal scaling of random-walk Metropolis algorithms
    • Roberts, G.O., Gelman, A., Gilks, W.R., Weak convergence and optimal scaling of random-walk Metropolis algorithms. Ann. Appl. Probab. 7:10 (1997), 110–120.
    • (1997) Ann. Appl. Probab. , vol.7 , Issue.10 , pp. 110-120
    • Roberts, G.O.1    Gelman, A.2    Gilks, W.R.3
  • 40
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo
    • Rosenthal, J.S., Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Am. Stat. Assoc. 90 (1995), 558–566.
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 41
    • 21444459448 scopus 로고    scopus 로고
    • Analysis of the Gibbs sampler for a model related to James-Stein estimators
    • Rosenthal, J.S., Analysis of the Gibbs sampler for a model related to James-Stein estimators. Stat. Comput. 6 (1996), 269–275.
    • (1996) Stat. Comput. , vol.6 , pp. 269-275
    • Rosenthal, J.S.1
  • 42
    • 0020130305 scopus 로고
    • Detecting initialization bias in simulation output
    • Schruben, L.W., Detecting initialization bias in simulation output. Oper. Res. 30 (1982), 569–590.
    • (1982) Oper. Res. , vol.30 , pp. 569-590
    • Schruben, L.W.1
  • 43
    • 0020848271 scopus 로고
    • Optimal tests for initialization bias in simulation output
    • Schruben, L.W., Singh, H., Tierney, L., Optimal tests for initialization bias in simulation output. Oper. Res. 31 (1983), 1167–1178.
    • (1983) Oper. Res. , vol.31 , pp. 1167-1178
    • Schruben, L.W.1    Singh, H.2    Tierney, L.3
  • 44
    • 78650237279 scopus 로고    scopus 로고
    • The random walk Metropolis: linking theory and practice through a case study
    • Sherlock, C., Fearnhead, P., Roberts, G.O., The random walk Metropolis: linking theory and practice through a case study. Stat. Sci. 25:2 (2010), 172–190.
    • (2010) Stat. Sci. , vol.25 , Issue.2 , pp. 172-190
    • Sherlock, C.1    Fearnhead, P.2    Roberts, G.O.3
  • 45
    • 84936806552 scopus 로고    scopus 로고
    • A computational procedure for efficient estimation of the mixing time of a random-scan Metropolis algorithm
    • Spade, D.A., A computational procedure for efficient estimation of the mixing time of a random-scan Metropolis algorithm. Stat. Comput. 26:4 (2016), 761–781.
    • (2016) Stat. Comput. , vol.26 , Issue.4 , pp. 761-781
    • Spade, D.A.1
  • 46
    • 85081903606 scopus 로고    scopus 로고
    • Geometric ergodicity of a Metropolis-Hastings algorithm for Bayesian inference of phylogenetic branch lengths
    • (accepted)
    • Spade, D.A., Geometric ergodicity of a Metropolis-Hastings algorithm for Bayesian inference of phylogenetic branch lengths. Comput. Stat., 2020 (accepted).
    • (2020) Comput. Stat.
    • Spade, D.A.1
  • 48
    • 84950432017 scopus 로고
    • A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms
    • Wei, G.C.G., Tanner, M.A., A Monte Carlo implementation of the EM algorithm and the poor man's data augmentation algorithms. J. Am. Stat. Assoc. 85 (1990), 699–704.
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 699-704
    • Wei, G.C.G.1    Tanner, M.A.2
  • 49
    • 0346573700 scopus 로고
    • 1 Error
    • University of California at Berkeley Department of Statistics
    • 1 Error. 1994, University of California at Berkeley Department of Statistics.
    • (1994)
    • Yu, B.1
  • 50
    • 0040528364 scopus 로고
    • Looking at Markov Samplers Through CUSUM Path Plots: A Simple Diagnostic Idea
    • University of California at Berkeley Department of Statistics
    • Yu, B., Mykland, P., Looking at Markov Samplers Through CUSUM Path Plots: A Simple Diagnostic Idea. 1994, University of California at Berkeley Department of Statistics.
    • (1994)
    • Yu, B.1    Mykland, P.2
  • 51
    • 84910906566 scopus 로고
    • Generalized linear models with random effects: a Gibbs sampling approach
    • Zeger, S., Karim, M.R., Generalized linear models with random effects: a Gibbs sampling approach. J. Am. Stat. Assoc. 86 (1991), 79–86.
    • (1991) J. Am. Stat. Assoc. , vol.86 , pp. 79-86
    • Zeger, S.1    Karim, M.R.2
  • 52
    • 21844490354 scopus 로고
    • Gibbs sampler convergence criteria
    • Zellner, A., Min, C.K., Gibbs sampler convergence criteria. J. Am. Stat. Assoc. 90 (1995), 921–927.
    • (1995) J. Am. Stat. Assoc. , vol.90 , pp. 921-927
    • Zellner, A.1    Min, C.K.2
  • 53
    • 4444233747 scopus 로고    scopus 로고
    • Learning a multivariate Gaussian model with the reversible jump MCMC algorithm
    • Zhang, Z., Chan, K.L., Wu, Y., Chen, C., Learning a multivariate Gaussian model with the reversible jump MCMC algorithm. Stat. Comput. 14:4 (2014), 343–355.
    • (2014) Stat. Comput. , vol.14 , Issue.4 , pp. 343-355
    • Zhang, Z.1    Chan, K.L.2    Wu, Y.3    Chen, C.4
  • 54
    • 85133621424 scopus 로고    scopus 로고
    • Bayesian Inference: With Ecological Applications
    • Academic Press
    • Link, W.A., Barker, R.J., Bayesian Inference: With Ecological Applications. 2009, Academic Press.
    • (2009)
    • Link, W.A.1    Barker, R.J.2
  • 55
    • 0030551974 scopus 로고    scopus 로고
    • Rates of convergence of the Hastings and Metropolis algorithms
    • Mengersen, K.L., Tweedie, R.L., Rates of convergence of the Hastings and Metropolis algorithms. Ann. Stat. 24:1 (1996), 101–121.
    • (1996) Ann. Stat. , vol.24 , Issue.1 , pp. 101-121
    • Mengersen, K.L.1    Tweedie, R.L.2
  • 56
    • 0003919677 scopus 로고    scopus 로고
    • Monte Carlo Statistical Methods
    • second Springer New York
    • Robert, C.P., Casella, G., Monte Carlo Statistical Methods. second, 2004, Springer, New York.
    • (2004)
    • Robert, C.P.1    Casella, G.2
  • 57
    • 0002074149 scopus 로고    scopus 로고
    • Geometric ergodicity and hybrid Markov chains
    • Paper 2
    • Roberts, G.O., Rosenthal, J.S., Geometric ergodicity and hybrid Markov chains. Electron. Commun. Probab. 2 (1997), 13–25 Paper 2.
    • (1997) Electron. Commun. Probab. , vol.2 , pp. 13-25
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 58
    • 0032221199 scopus 로고    scopus 로고
    • Two convergence properties of hybrid samplers
    • Roberts, G.O., Rosenthal, J.S., Two convergence properties of hybrid samplers. Ann. Appl. Probab. 8 (1998), 397–407.
    • (1998) Ann. Appl. Probab. , vol.8 , pp. 397-407
    • Roberts, G.O.1    Rosenthal, J.S.2
  • 59
    • 0000223765 scopus 로고
    • On the convergence of successive substitution sampling
    • Schervish, M.J., Carlin, B.P., On the convergence of successive substitution sampling. J. Comput. Graph. Stat. 1 (1992), 111–127.
    • (1992) J. Comput. Graph. Stat. , vol.1 , pp. 111-127
    • Schervish, M.J.1    Carlin, B.P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.