-
2
-
-
85082405608
-
Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission
-
Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. SCIENCE CHINA Life Sciences.
-
SCIENCE China Life Sciences
-
-
Xu, X.1
Chen, P.2
Wang, J.3
Feng, J.4
Zhou, H.5
Li, X.6
-
3
-
-
85078741591
-
Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding
-
London, England
-
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England).
-
(2020)
Lancet
-
-
Lu, R.1
Zhao, X.2
Li, J.3
Niu, P.4
Yang, B.5
Wu, H.6
-
4
-
-
85081624816
-
A pneumonia outbreak associated with a new coronavirus of probable bat origin
-
Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature.
-
(2020)
Nature
-
-
Zhou, P.1
Yang, X.-L.2
Wang, X.-G.3
Hu, B.4
Zhang, L.5
Zhang, W.6
-
5
-
-
23844463115
-
A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury
-
Kuba K, Imai Y, Rao SA, Gao H, Guo F, Guan B, et al. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine, 11:875-879.
-
(2005)
Nature Medicine
, vol.11
, pp. 875-879
-
-
Kuba, K.1
Imai, Y.2
Rao, S.A.3
Gao, H.4
Guo, F.5
Guan, B.6
-
6
-
-
84889573658
-
Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor
-
Ge X-Y, Li J-L, Yang X-L, Chmura AA, Zhu G, Epstein JH, et al. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 503:535-+.
-
(2013)
Nature
, vol.503
, pp. 535
-
-
Ge, X.-Y.1
Li, J.-L.2
Yang, X.-L.3
Chmura, A.A.4
Zhu, G.5
Epstein, J.H.6
-
7
-
-
85081234172
-
The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells
-
2001.2031.929042
-
Hoffmann M, Kleine-Weber H, Krüger N, Müller M, Drosten C, Pöhlmann S (2020). The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. bioRxiv:2020.2001.2031.929042.
-
(2020)
bioRxiv
-
-
Hoffmann, M.1
Kleine-Weber, H.2
Krüger, N.3
Müller, M.4
Drosten, C.5
Pöhlmann, S.6
-
8
-
-
79954628266
-
Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response
-
Glowacka I, Bertram S, Mueller MA, Allen P, Soilleux E, Pfefferle S, et al. (2011). Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. Journal of Virology, 85:4122-4134.
-
(2011)
Journal of Virology
, vol.85
, pp. 4122-4134
-
-
Glowacka, I.1
Bertram, S.2
Mueller, M.A.3
Allen, P.4
Soilleux, E.5
Pfefferle, S.6
-
9
-
-
85062601344
-
TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection
-
Iwata-Yoshikawa N, Okamura T, Shimizu Y, Hasegawa H, Takeda M, Nagata N (2019). TMPRSS2 Contributes to Virus Spread and Immunopathology in the Airways of Murine Models after Coronavirus Infection. Journal of Virology, 93.
-
(2019)
Journal of Virology
, vol.93
-
-
Iwata-Yoshikawa, N.1
Okamura, T.2
Shimizu, Y.3
Hasegawa, H.4
Takeda, M.5
Nagata, N.6
-
10
-
-
2642539225
-
Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
-
Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H (2004). Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Journal of Pathology, 203:631-637.
-
(2004)
Journal of Pathology
, vol.203
, pp. 631-637
-
-
Hamming, I.1
Timens, W.2
Bulthuis, M.L.C.3
Lely, A.T.4
Navis, G.J.5
van Goor, H.6
-
11
-
-
85078262578
-
Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China
-
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 395:497-506
-
(2020)
The Lancet
, vol.395
, pp. 497-506
-
-
Huang, C.1
Wang, Y.2
Li, X.3
Ren, L.4
Zhao, J.5
Hu, Y.6
-
12
-
-
84856023693
-
Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: An open-label phase 2a proof-of-concept study
-
Connick P, Kolappan M, Crawley C, Webber DJ, Patani R, Michell AW, et al. (2012). Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study. Lancet Neurology, 11:150-156.
-
(2012)
Lancet Neurology
, vol.11
, pp. 150-156
-
-
Connick, P.1
Kolappan, M.2
Crawley, C.3
Webber, D.J.4
Patani, R.5
Michell, A.W.6
-
13
-
-
84920500515
-
Mesenchymal stem (stromal) cells for treatment of ARDS: A phase 1 clinical trial
-
Wilson JG, Liu KD, Zhuo NJ, Caballero L, McMillan M, Fang XH, et al. (2015). Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respiratory Medicine, 3:24-32.
-
(2015)
Lancet Respiratory Medicine
, vol.3
, pp. 24-32
-
-
Wilson, J.G.1
Liu, K.D.2
Zhuo, N.J.3
Caballero, L.4
McMillan, M.5
Fang, X.H.6
-
14
-
-
84961164161
-
Survival after mesenchymal stromal cell therapy in steroid-refractory acute graft-versus-host disease: Systematic review and meta-analysis
-
Hashmi S, Ahmed M, Murad MH, Litzow MR, Adams RH, Ball LM, et al. (2016). Survival after mesenchymal stromal cell therapy in steroid-refractory acute graft-versus-host disease: systematic review and meta-analysis. Lancet Haematology, 3:E45-E52.
-
(2016)
Lancet Haematology
, vol.3
, pp. E45-E52
-
-
Hashmi, S.1
Ahmed, M.2
Murad, M.H.3
Litzow, M.R.4
Adams, R.H.5
Ball, L.M.6
-
15
-
-
85075409251
-
CT-04 Safety and efficacy of allogeneic umbilical cord-derived mesenchymal stem cells (MSCs) in patients with systemic lupus erythematosus: Results of an open-label phase I study
-
Kamen DL, Nietert PJ, Wang H, Duke T, Cloud C, Robinson A, et al. (2018). CT-04 Safety and efficacy of allogeneic umbilical cord-derived mesenchymal stem cells (MSCs) in patients with systemic lupus erythematosus: results of an open-label phase I study. Lupus Science & Medicine, 5:A46-A47.
-
(2018)
Lupus Science & Medicine
, vol.5
, pp. A46-A47
-
-
Kamen, D.L.1
Nietert, P.J.2
Wang, H.3
Duke, T.4
Cloud, C.5
Robinson, A.6
-
16
-
-
85047193908
-
Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities
-
Galipeau J, Sensebe L (2018). Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell, 22:824-833.
-
(2018)
Cell Stem Cell
, vol.22
, pp. 824-833
-
-
Galipeau, J.1
Sensebe, L.2
-
17
-
-
84885099905
-
Mesenchymal stromal cells: Sensors and switchers of inflammation
-
Bernardo ME, Fibbe WE (2013). Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation. Cell Stem Cell, 13:392-402.
-
(2013)
Cell Stem Cell
, vol.13
, pp. 392-402
-
-
Bernardo, M.E.1
Fibbe, W.E.2
-
18
-
-
77956420421
-
A new mesenchymal stem cell (MSC) paradigm: Polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype
-
Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM (2010). A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One, 5:e10088.
-
(2010)
PLoS One
, vol.5
-
-
Waterman, R.S.1
Tomchuck, S.L.2
Henkle, S.L.3
Betancourt, A.M.4
-
19
-
-
84865184497
-
Mesenchymal stem cells: A double-edged sword in regulating immune responses
-
Li W, Ren G, Huang Y, Su J, Han Y, Li J, et al. (2012). Mesenchymal stem cells: a double-edged sword in regulating immune responses. Cell Death Differ, 19:1505-1513.
-
(2012)
Cell Death Differ
, vol.19
, pp. 1505-1513
-
-
Li, W.1
Ren, G.2
Huang, Y.3
Su, J.4
Han, Y.5
Li, J.6
-
20
-
-
85079242706
-
Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China
-
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. (2020). Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA.
-
(2020)
JAMA
-
-
Wang, D.1
Hu, B.2
Hu, C.3
Zhu, F.4
Liu, X.5
Zhang, J.6
-
21
-
-
85078761741
-
Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study
-
London, England
-
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet (London, England).
-
(2020)
Lancet
-
-
Chen, N.1
Zhou, M.2
Dong, X.3
Qu, J.4
Gong, F.5
Han, Y.6
-
22
-
-
36248968773
-
Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34(+) cells
-
Chen L, Zhang W, Yue H, Han Q, Chen B, Shi M, et al. (2007). Effects of human mesenchymal stem cells on the differentiation of dendritic cells from CD34(+) cells. Stem Cells and Development, 16:719-731.
-
(2007)
Stem Cells and Development
, vol.16
, pp. 719-731
-
-
Chen, L.1
Zhang, W.2
Yue, H.3
Han, Q.4
Chen, B.5
Shi, M.6
-
23
-
-
84864132642
-
Mesenchymal stem/stromal cells induce the generation of novel IL-10-dependent regulatory dendritic cells by SOCS3 activation
-
Liu X, Qu X, Chen Y, Liao L, Cheng K, Shao C, et al. (2012). Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IL-10-Dependent Regulatory Dendritic Cells by SOCS3 Activation. Journal of Immunology, 189:1182-1192.
-
(2012)
Journal of Immunology
, vol.189
, pp. 1182-1192
-
-
Liu, X.1
Qu, X.2
Chen, Y.3
Liao, L.4
Cheng, K.5
Shao, C.6
-
24
-
-
84928471443
-
SCa-1(+)Lin(-)CD117(-) mesenchymal stem/stromal cells induce the generation of novel IRF8-controlled regulatory dendritic cells through Notch-RBP-J signaling
-
Liu X, Ren S, Ge C, Cheng K, Zenke M, Keating A, et al. (2015). Sca-1(+)Lin(-)CD117(-) Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch-RBP-J Signaling. Journal of Immunology, 194:4298-4308.
-
(2015)
Journal of Immunology
, vol.194
, pp. 4298-4308
-
-
Liu, X.1
Ren, S.2
Ge, C.3
Cheng, K.4
Zenke, M.5
Keating, A.6
-
25
-
-
59449096601
-
Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population
-
Zhang B, Liu R, Shi D, Liu X, Chen Y, Dou X, et al. (2009). Mesenchymal stem cells induce mature dendritic cells into a novel Jagged-2-dependent regulatory dendritic cell population. Blood, 113:46-57.
-
(2009)
Blood
, vol.113
, pp. 46-57
-
-
Zhang, B.1
Liu, R.2
Shi, D.3
Liu, X.4
Chen, Y.5
Dou, X.6
-
26
-
-
85045298028
-
Role of C-reactive protein at sites of inflammation and infection
-
Sproston NR, Ashworth JJ (2018). Role of C-Reactive Protein at Sites of Inflammation and Infection. Frontiers in Immunology, 9.
-
(2018)
Frontiers in Immunology
, vol.9
-
-
Sproston, N.R.1
Ashworth, J.J.2
-
27
-
-
77956398698
-
C-reactive protein is a mediator of cardiovascular disease
-
Bisoendial RJ, Boekholdt SM, Vergeer M, Stroes ESG, Kastelein JJP (2010). C-reactive protein is a mediator of cardiovascular disease. European Heart Journal, 31:2087-U1505.
-
(2010)
European Heart Journal
, vol.31
, pp. 2087U1505
-
-
Bisoendial, R.J.1
Boekholdt, S.M.2
Vergeer, M.3
Stroes, E.S.G.4
Kastelein, J.J.P.5
|