-
1
-
-
85032821844
-
Engineering microbial fatty acid metabolism for biofuels and biochemicals
-
COI: 1:CAS:528:DC%2BC2sXhslSgtrjO
-
Marella, E. R., Holkenbrink, C., Siewers, V. & Borodina, I. Engineering microbial fatty acid metabolism for biofuels and biochemicals. Curr. Opin. Biotechnol. 50, 39–46 (2018).
-
(2018)
Curr. Opin. Biotechnol.
, vol.50
, pp. 39-46
-
-
Marella, E.R.1
Holkenbrink, C.2
Siewers, V.3
Borodina, I.4
-
2
-
-
84942532025
-
Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids
-
COI: 1:CAS:528:DC%2BC2MXht1GmurjL
-
Beller, H. R., Lee, T. S. & Katz, L. Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat. Prod. Rep. 32, 1508–26 (2015).
-
(2015)
Nat. Prod. Rep.
, vol.32
, pp. 1508-1526
-
-
Beller, H.R.1
Lee, T.S.2
Katz, L.3
-
3
-
-
77955619699
-
An outlook on microalgal biofuels
-
COI: 1:CAS:528:DC%2BC3cXpvV2iu78%3D
-
Wijffels, R. H. & Barbosa, M. J. An outlook on microalgal biofuels. Science 329, 796–9 (2010).
-
(2010)
Science
, vol.329
, pp. 796-799
-
-
Wijffels, R.H.1
Barbosa, M.J.2
-
4
-
-
84878651410
-
Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae
-
COI: 1:CAS:528:DC%2BC3sXnt1ansbs%3D
-
Wijffels, R. H., Kruse, O. & Hellingwerf, K. J. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Curr. Opin. Biotechnol. 24, 405–13 (2013).
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 405-413
-
-
Wijffels, R.H.1
Kruse, O.2
Hellingwerf, K.J.3
-
5
-
-
84887621646
-
Photosynthetic approaches to chemical biotechnology
-
COI: 1:CAS:528:DC%2BC3sXls1Sgs74%3D
-
Desai, S. H. & Atsumi, S. Photosynthetic approaches to chemical biotechnology. Curr. Opin. Biotechnol. 24, 1031–6 (2013).
-
(2013)
Curr. Opin. Biotechnol.
, vol.24
, pp. 1031-1036
-
-
Desai, S.H.1
Atsumi, S.2
-
6
-
-
84891829362
-
Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals
-
COI: 1:CAS:528:DC%2BC3sXht1altLnN
-
Runguphan, W. & Keasling, J. D. Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals. Metab. Eng. 21, 103–113 (2014).
-
(2014)
Metab. Eng.
, vol.21
, pp. 103-113
-
-
Runguphan, W.1
Keasling, J.D.2
-
7
-
-
84922064018
-
Terpenoids and their biosynthesis in cyanobacteria
-
COI: 1:CAS:528:DC%2BC1cXjslGnsL0%3D
-
Pattanaik, B. & Lindberg, P. Terpenoids and their biosynthesis in cyanobacteria. Life 5, 269–93 (2015).
-
(2015)
Life
, vol.5
, pp. 269-293
-
-
Pattanaik, B.1
Lindberg, P.2
-
8
-
-
85028659058
-
Metabolic engineering for advanced biofuels: production and recent advances toward commercialization
-
Meadows, C. W., Kang, A. & Lee, T. S. Metabolic engineering for advanced biofuels: production and recent advances toward commercialization. Biotechnol. J. 13, 1600433, 10.1002/biot.201600433 (2018).
-
(2018)
Biotechnol. J.
, vol.13
, pp. 1600433
-
-
Meadows, C.W.1
Kang, A.2
Lee, T.S.3
-
9
-
-
78650045315
-
The role of butanol in the development of sustainable fuel technologies
-
COI: 1:CAS:528:DC%2BC3cXhsFGhu7jL
-
Harvey, B. G. & Meylemans, H. A. The role of butanol in the development of sustainable fuel technologies. J. Chem. Technol. Biotechnol. 86, 2–9 (2011).
-
(2011)
J. Chem. Technol. Biotechnol.
, vol.86
, pp. 2-9
-
-
Harvey, B.G.1
Meylemans, H.A.2
-
10
-
-
84876313922
-
Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria
-
COI: 1:CAS:528:DC%2BC3sXmvV2gtbw%3D
-
Delrue, F. et al. Comparison of various microalgae liquid biofuel production pathways based on energetic, economic and environmental criteria. Bioresource Technol. 136, 205–212 (2013).
-
(2013)
Bioresource Technol.
, vol.136
, pp. 205-212
-
-
Delrue, F.1
-
11
-
-
43549087929
-
Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels
-
COI: 1:CAS:528:DC%2BD1cXmvFKgsrc%3D
-
Jetter, R. & Kunst, L. Plant surface lipid biosynthetic pathways and their utility for metabolic engineering of waxes and hydrocarbon biofuels. Plant J. 54, 670–83 (2008).
-
(2008)
Plant J.
, vol.54
, pp. 670-683
-
-
Jetter, R.1
Kunst, L.2
-
12
-
-
84923931721
-
Microbial synthesis of alka(e)nes
-
Wang, W. & Lu, X. Microbial synthesis of alka(e)nes. Front. Bioeng. Biotechnol. 1, 10, 10.3389/fbioe.2013.00010 (2013).
-
(2013)
Front. Bioeng. Biotechnol.
, vol.1
, pp. 10
-
-
Wang, W.1
Lu, X.2
-
13
-
-
84983491031
-
Enzymes for fatty acid-based hydrocarbon biosynthesis
-
COI: 1:CAS:528:DC%2BC28XhsVamtr%2FK
-
Herman, N. A. & Zhang, W. Enzymes for fatty acid-based hydrocarbon biosynthesis. Curr. Opin. Chem. Biol. 35, 22–28 (2016).
-
(2016)
Curr. Opin. Chem. Biol.
, vol.35
, pp. 22-28
-
-
Herman, N.A.1
Zhang, W.2
-
14
-
-
77955118014
-
Microbial biosynthesis of alkanes
-
COI: 1:CAS:528:DC%2BC3cXptlCltLc%3D
-
Schirmer, A., Rude, M., Li, X., Popova, E. & del Cardayre, S. B. Microbial biosynthesis of alkanes. Science 329, 559–62 (2010).
-
(2010)
Science
, vol.329
, pp. 559-562
-
-
Schirmer, A.1
Rude, M.2
Li, X.3
Popova, E.4
del Cardayre, S.B.5
-
15
-
-
79953214587
-
Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species
-
COI: 1:CAS:528:DC%2BC3MXhtVWktbrF
-
Rude, M. et al. Terminal olefin (1-alkene) biosynthesis by a novel P450 fatty acid decarboxylase from Jeotgalicoccus species. Appl. Environ. Microbiol. 77, 1718–27 (2011).
-
(2011)
Appl. Environ. Microbiol.
, vol.77
, pp. 1718-1727
-
-
Rude, M.1
-
16
-
-
84877352651
-
Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli
-
COI: 1:CAS:528:DC%2BC3sXptFGrt7c%3D
-
Howard, T. P. et al. Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in Escherichia coli. Proc. Natl. Acad. Sci. USA 110, 7636–41 (2013).
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 7636-7641
-
-
Howard, T.P.1
-
17
-
-
84886948663
-
Microbial production of short-chain alkanes
-
COI: 1:CAS:528:DC%2BC3sXhsFaksr%2FK
-
Choi, Y. J. & Lee, S. Y. Microbial production of short-chain alkanes. Nature 502, 571–4 (2013).
-
(2013)
Nature
, vol.502
, pp. 571-574
-
-
Choi, Y.J.1
Lee, S.Y.2
-
18
-
-
84874865676
-
Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products
-
Kaiser, B. K. et al. Fatty aldehydes in cyanobacteria are a metabolically flexible precursor for a diversity of biofuel products. PLoS One 8, e58307, 10.1371/journal.pone.0058307 (2013).
-
(2013)
PLoS One
, vol.8
-
-
Kaiser, B.K.1
-
19
-
-
84919897861
-
Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase
-
COI: 1:CAS:528:DC%2BC2cXitVClu7vO
-
Rui, Z. et al. Microbial biosynthesis of medium-chain 1-alkenes by a nonheme iron oxidase. Proc. Natl. Acad. Sci. USA 111, 18237–42 (2014).
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 18237-18242
-
-
Rui, Z.1
-
20
-
-
84896721360
-
JE P450 fatty acid decarboxylase
-
JE P450 fatty acid decarboxylase. Biotechnol. Biofuels 7, 28, 10.1186/1754-6834-7-28 (2014).
-
(2014)
Biotechnol. Biofuels
, vol.7
-
-
Liu, Y.1
-
21
-
-
84938937515
-
Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli
-
COI: 1:CAS:528:DC%2BC2MXhtVyhtb3O
-
Coursolle, D., Lian, J., Shanklin, J. & Zhao, H. Production of long chain alcohols and alkanes upon coexpression of an acyl-ACP reductase and aldehyde-deformylating oxygenase with a bacterial type-I fatty acid synthase in E. coli. Mol. BioSyst. 11, 2464–2472 (2015).
-
(2015)
Mol. BioSyst.
, vol.11
, pp. 2464-2472
-
-
Coursolle, D.1
Lian, J.2
Shanklin, J.3
Zhao, H.4
-
22
-
-
84953639100
-
Improving alkane synthesis in Escherichia coli via metabolic engineering
-
COI: 1:CAS:528:DC%2BC2MXhs1yjsrjM
-
Song, X., Yu, H. & Zhu, K. Improving alkane synthesis in Escherichia coli via metabolic engineering. Appl. Genet. Mol. Biotechnol. 100, 757–767 (2016).
-
(2016)
Appl. Genet. Mol. Biotechnol.
, vol.100
, pp. 757-767
-
-
Song, X.1
Yu, H.2
Zhu, K.3
-
23
-
-
84973513749
-
Heterologous biosynthesis and manipulation of alkanes in Escherichia coli
-
COI: 1:CAS:528:DC%2BC28Xps1arsLk%3D
-
Cao, Y. X. et al. Heterologous biosynthesis and manipulation of alkanes in Escherichia coli. Metab. Eng. 38, 19–28 (2016).
-
(2016)
Metab. Eng.
, vol.38
, pp. 19-28
-
-
Cao, Y.X.1
-
24
-
-
85018934566
-
Comparison of orthologous cyanobacterial aldehyde deformylating oxygenases in the production of volatile C3-C7 alkanes in engineered E. coli
-
Patrikainen, P., Carbonell, V., Thiel, K., Aro, E. M. & Kallio, P. Comparison of orthologous cyanobacterial aldehyde deformylating oxygenases in the production of volatile C3-C7 alkanes in engineered E. coli. Metab. Eng. Commun. 5, 9–18 (2017).
-
(2017)
Metab. Eng. Commun.
, vol.5
, pp. 9-18
-
-
Patrikainen, P.1
Carbonell, V.2
Thiel, K.3
Aro, E.M.4
Kallio, P.5
-
25
-
-
85052519319
-
Production of alkanes from CO2 by engineered bacteria
-
Lehtinen, T., Virtanen, H., Santala, S. & Santala, V. Production of alkanes from CO2 by engineered bacteria. Biotechnol. Biofuels 11, 228 (2018).
-
(2018)
Biotechnol. Biofuels
, vol.11
-
-
Lehtinen, T.1
Virtanen, H.2
Santala, S.3
Santala, V.4
-
26
-
-
84865319405
-
Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long- chain alkane synthesis complex
-
COI: 1:CAS:528:DC%2BC38XhtlChsb3P
-
Bernard, A. et al. Reconstitution of plant alkane biosynthesis in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core components of a very-long- chain alkane synthesis complex. Plant Cell 24, 3106–18 (2012).
-
(2012)
Plant Cell
, vol.24
, pp. 3106-3118
-
-
Bernard, A.1
-
27
-
-
84937678669
-
Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production
-
Chen, B., Lee, D. Y. & Chang, M. W. Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production. Metab. Eng. 31, 53–61 (2015).
-
(2015)
Metab. Eng.
, vol.31
, pp. 53-61
-
-
Chen, B.1
Lee, D.Y.2
Chang, M.W.3
-
28
-
-
85053517843
-
Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories
-
Zhou, Y. J. et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nature Comm. 7, 11709, 10.1038/ncomms11709 (2016).
-
(2016)
Nature Comm.
, vol.7
, pp. 11709
-
-
Zhou, Y.J.1
-
29
-
-
85019099241
-
Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae
-
Kang, M. K., Zhou, Y. J., Buijs, N. A. & Nielsen, J. Functional screening of aldehyde decarbonylases for long-chain alkane production by Saccharomyces cerevisiae. Microb. Cell Fact. 16, 74, 10.1186/s12934-017-0683-z (2017).
-
(2017)
Microb. Cell Fact.
, vol.16
, pp. 74
-
-
Kang, M.K.1
Zhou, Y.J.2
Buijs, N.A.3
Nielsen, J.4
-
30
-
-
84907373911
-
Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli
-
COI: 1:CAS:528:DC%2BC2cXhtleit7%2FE
-
Rodriguez, G. M. & Atsumi, S. Toward aldehyde and alkane production by removing aldehyde reductase activity in Escherichia coli. Metab. Eng. 25, 227–237 (2014).
-
(2014)
Metab. Eng.
, vol.25
, pp. 227-237
-
-
Rodriguez, G.M.1
Atsumi, S.2
-
31
-
-
84874253384
-
Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2
-
COI: 1:CAS:528:DC%2BC3sXjvFeltbY%3D
-
Andre, C., Kim, S. W., Yu, X.-H. & Shanklin, J. Fusing catalase to an alkane-producing enzyme maintains enzymatic activity by converting the inhibitory byproduct H2O2 to the cosubstrate O2. Proc. Natl. Acad. Sci. USA 110, 3191–3196 (2013).
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 3191-3196
-
-
Andre, C.1
Kim, S.W.2
Yu, X.-H.3
Shanklin, J.4
-
32
-
-
84879829539
-
Production of propane and other short-chain alkanes by structure-based engineering of ligand specificity in aldehyde-deformylating oxygenase
-
COI: 1:CAS:528:DC%2BC3sXptFGgtr0%3D
-
Khara, B. et al. Production of propane and other short-chain alkanes by structure-based engineering of ligand specificity in aldehyde-deformylating oxygenase. Chembiochem. 14, 1204–8 (2013).
-
(2013)
Chembiochem.
, vol.14
, pp. 1204-1208
-
-
Khara, B.1
-
33
-
-
84878642242
-
Conversion of fatty aldehydes into alk (a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system
-
Zhang, J., Lu, X. & Li, J. J. Conversion of fatty aldehydes into alk (a/e)nes by in vitro reconstituted cyanobacterial aldehyde-deformylating oxygenase with the cognate electron transfer system. Biotechnol. Biofuels 6, 86, 10.1186/1754-6834-6-86 (2013).
-
(2013)
Biotechnol. Biofuels
, vol.6
-
-
Zhang, J.1
Lu, X.2
Li, J.J.3
-
34
-
-
84927649855
-
Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase
-
Hayashi, Y., Yasugi, F. & Arai, M. Role of cysteine residues in the structure, stability, and alkane producing activity of cyanobacterial aldehyde deformylating oxygenase. PLoS One 10, e0122217, 10.1371/journal.pone.0122217 (2015).
-
(2015)
PLoS One
, vol.10
-
-
Hayashi, Y.1
Yasugi, F.2
Arai, M.3
-
35
-
-
84982962212
-
Microalgae synthesize hydrocarbons from long-chain fatty acids via a light-dependent pathway
-
PID: 27288359
-
Sorigué, D. et al. Microalgae synthesize hydrocarbons from long-chain fatty acids via a light-dependent pathway. Plant Physiol. 171, 2393–405 (2016).
-
(2016)
Plant Physiol.
, vol.171
, pp. 2393-2405
-
-
Sorigué, D.1
-
36
-
-
85029496551
-
An algal photoenzyme converts fatty acids to hydrocarbons
-
Sorigué, D. et al. An algal photoenzyme converts fatty acids to hydrocarbons. Science 357, 903–907 (2017).
-
(2017)
Science
, vol.357
, pp. 903-907
-
-
Sorigué, D.1
-
37
-
-
85048034302
-
Photoenzymes and related topics: an update
-
Björn, L. O. Photoenzymes and related topics: an update. Photochem. Photobiol. 94, 459–465 (2018).
-
(2018)
Photochem. Photobiol.
, vol.94
, pp. 459-465
-
-
Björn, L.O.1
-
38
-
-
85061856663
-
Hydrocarbon synthesis via photoenzymatic decarboxylation of carboxylic acids
-
COI: 1:CAS:528:DC%2BC1MXhslWksrs%3D
-
Zhang, W. et al. Hydrocarbon synthesis via photoenzymatic decarboxylation of carboxylic acids. J. Am. Chem. Soc. 141, 3116–3120 (2019).
-
(2019)
J. Am. Chem. Soc.
, vol.141
, pp. 3116-3120
-
-
Zhang, W.1
-
39
-
-
85052649877
-
Synthetic metabolic pathways for photobiological conversion of CO2 into hydrocarbon fuel
-
COI: 1:CAS:528:DC%2BC1cXhs1GqtLvI
-
Yunus, I. S. et al. Synthetic metabolic pathways for photobiological conversion of CO2 into hydrocarbon fuel. Metab. Eng. 49, 201–211 (2018).
-
(2018)
Metab. Eng.
, vol.49
, pp. 201-211
-
-
Yunus, I.S.1
-
40
-
-
0028149560
-
Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase
-
COI: 1:CAS:528:DyaK2MXitleit7o%3D
-
Voelker, T. A. & Davies, H. M. Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J. Bacteriol. 176, 7320–7 (1994).
-
(1994)
J. Bacteriol.
, vol.176
, pp. 7320-7327
-
-
Voelker, T.A.1
Davies, H.M.2
-
41
-
-
75749125061
-
Microbial production of fatty-acid-derived fuels and chemicals from plant biomass
-
COI: 1:CAS:528:DC%2BC3cXht1Slu70%3D
-
Steen, E. J. et al. Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463, 559–563 (2010).
-
(2010)
Nature
, vol.463
, pp. 559-563
-
-
Steen, E.J.1
-
42
-
-
85058702461
-
Flavodiiron-mediated O2 photoreduction links H2 production with CO2 fixation during the anaerobic induction of photosynthesis
-
COI: 1:CAS:528:DC%2BC1cXitVaktbjN
-
Burlacot, A. et al. Flavodiiron-mediated O2 photoreduction links H2 production with CO2 fixation during the anaerobic induction of photosynthesis. Plant Physiol. 177, 1639–1649 (2018).
-
(2018)
Plant Physiol.
, vol.177
, pp. 1639-1649
-
-
Burlacot, A.1
|