메뉴 건너뛰기




Volumn 155, Issue , 2019, Pages 136-149

Mapping irrigated cropland extent across the conterminous United States at 30 m resolution using a semi-automatic training approach on Google Earth Engine

Author keywords

Automatic classification; Conterminous United States; Google Earth Engine; Irrigation agriculture; Landsat; Water use

Indexed keywords

AQUIFERS; AUTOMATIC INDEXING; CLIMATE CHANGE; DATA VISUALIZATION; DECISION TREES; ENGINES; EXTRACTION; LAKES; LAND USE; MAPPING; REMOTE SENSING; SATELLITE IMAGERY;

EID: 85069565645     PISSN: 09242716     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.isprsjprs.2019.07.005     Document Type: Article
Times cited : (99)

References (62)
  • 1
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: A review of applications and future directions
    • Belgiu, M., Drăguţ, L., Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114 (2016), 24–31.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăguţ, L.2
  • 2
    • 79960831514 scopus 로고    scopus 로고
    • Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program
    • Boryan, C., Yang, Z., Mueller, R., Craig, M., Monitoring US agriculture: the US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 26 (2011), 341–358.
    • (2011) Geocarto Int. , vol.26 , pp. 341-358
    • Boryan, C.1    Yang, Z.2    Mueller, R.3    Craig, M.4
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L., Random forests. Machine learning 45 (2001), 5–32.
    • (2001) Machine learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 84899917650 scopus 로고    scopus 로고
    • Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture
    • Brown, J.F., Pervez, M.S., Merging remote sensing data and national agricultural statistics to model change in irrigated agriculture. Agric. Syst. 127 (2014), 28–40.
    • (2014) Agric. Syst. , vol.127 , pp. 28-40
    • Brown, J.F.1    Pervez, M.S.2
  • 5
    • 85032226614 scopus 로고    scopus 로고
    • Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data
    • Chen, Y., Lu, D., Luo, L., Pokhrel, Y., Deb, K., Huang, J., Ran, Y., Detecting irrigation extent, frequency, and timing in a heterogeneous arid agricultural region using MODIS time series, Landsat imagery, and ancillary data. Remote Sens. Environ. 204 (2018), 197–211.
    • (2018) Remote Sens. Environ. , vol.204 , pp. 197-211
    • Chen, Y.1    Lu, D.2    Luo, L.3    Pokhrel, Y.4    Deb, K.5    Huang, J.6    Ran, Y.7
  • 6
    • 85031491487 scopus 로고    scopus 로고
    • Annual irrigation dynamics in the U.S. northern high plains derived from landsat satellite data
    • Deines, J.M., Kendall, A.D., Hyndman, D.W., Annual irrigation dynamics in the U.S. northern high plains derived from landsat satellite data. Geophys. Res. Lett. 44 (2017), 9350–9360.
    • (2017) Geophys. Res. Lett. , vol.44 , pp. 9350-9360
    • Deines, J.M.1    Kendall, A.D.2    Hyndman, D.W.3
  • 8
    • 85069579526 scopus 로고    scopus 로고
    • MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006, in: DAAC, N.E.L. (Ed.).
    • Didan, K., 2015. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006, in: DAAC, N.E.L. (Ed.).
    • (2015)
    • Didan, K.1
  • 11
    • 33746932125 scopus 로고    scopus 로고
    • On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance
    • Gao, F., Masek, J., Schwaller, M., Hall, F., On the blending of the landsat and MODIS surface reflectance: Predicting daily landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 44 (2006), 2207–2218.
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 2207-2218
    • Gao, F.1    Masek, J.2    Schwaller, M.3    Hall, F.4
  • 13
    • 85029490357 scopus 로고    scopus 로고
    • Detection of cropland field parcels from Landsat imagery
    • Graesser, J., Ramankutty, N., Detection of cropland field parcels from Landsat imagery. Remote Sens. Environ. 201 (2017), 165–180.
    • (2017) Remote Sens. Environ. , vol.201 , pp. 165-180
    • Graesser, J.1    Ramankutty, N.2
  • 14
    • 84896308273 scopus 로고    scopus 로고
    • Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500m data for the year 2010
    • Gumma, M.K., Thenkabail, P.S., Maunahan, A., Islam, S., Nelson, A., Mapping seasonal rice cropland extent and area in the high cropping intensity environment of Bangladesh using MODIS 500m data for the year 2010. ISPRS J. Photogramm. Remote Sens. 91 (2014), 98–113.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.91 , pp. 98-113
    • Gumma, M.K.1    Thenkabail, P.S.2    Maunahan, A.3    Islam, S.4    Nelson, A.5
  • 16
    • 84929465562 scopus 로고    scopus 로고
    • Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information
    • Homer, C., Dewitz, J., Yang, L., Jin, S., Danielson, P., Xian, G., Coulston, J., Herold, N., Wickham, J., Megown, K., Completion of the 2011 National Land Cover Database for the conterminous United States–representing a decade of land cover change information. Photogramm. Eng. Remote Sens. 81 (2015), 345–354.
    • (2015) Photogramm. Eng. Remote Sens. , vol.81 , pp. 345-354
    • Homer, C.1    Dewitz, J.2    Yang, L.3    Jin, S.4    Danielson, P.5    Xian, G.6    Coulston, J.7    Herold, N.8    Wickham, J.9    Megown, K.10
  • 17
    • 84923552740 scopus 로고    scopus 로고
    • Annual crop type classification of the US Great Plains for 2000 to 2011
    • Howard, D.M., Wylie, B.K., Annual crop type classification of the US Great Plains for 2000 to 2011. Photogramm. Eng. Remote Sens. 80 (2014), 537–549.
    • (2014) Photogramm. Eng. Remote Sens. , vol.80 , pp. 537-549
    • Howard, D.M.1    Wylie, B.K.2
  • 18
    • 0019685845 scopus 로고
    • Canopy temperature as a crop water stress indicator
    • Jackson, R.D., Idso, S., Reginato, R., Pinter, P. Jr, Canopy temperature as a crop water stress indicator. Water Resour. Res. 17 (1981), 1133–1138.
    • (1981) Water Resour. Res. , vol.17 , pp. 1133-1138
    • Jackson, R.D.1    Idso, S.2    Reginato, R.3    Pinter, P.4
  • 19
    • 84928720918 scopus 로고    scopus 로고
    • Cropland expansion outpaces agricultural and biofuel policies in the United States
    • 044003
    • Lark, T.J., Meghan Salmon, J., Gibbs, H.K., Cropland expansion outpaces agricultural and biofuel policies in the United States. Environ. Res. Lett., 10, 2015 044003.
    • (2015) Environ. Res. Lett. , vol.10
    • Lark, T.J.1    Meghan Salmon, J.2    Gibbs, H.K.3
  • 20
    • 85032229600 scopus 로고    scopus 로고
    • Measuring land-use and land-cover change using the U.S. department of agriculture's cropland data layer: Cautions and recommendations
    • Lark, T.J., Mueller, R.M., Johnson, D.M., Gibbs, H.K., Measuring land-use and land-cover change using the U.S. department of agriculture's cropland data layer: Cautions and recommendations. Int. J. Appl. Earth Obs. Geoinf. 62 (2017), 224–235.
    • (2017) Int. J. Appl. Earth Obs. Geoinf. , vol.62 , pp. 224-235
    • Lark, T.J.1    Mueller, R.M.2    Johnson, D.M.3    Gibbs, H.K.4
  • 21
    • 0034655807 scopus 로고    scopus 로고
    • Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data
    • Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L., Merchant, J.W., Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21 (2000), 1303–1330.
    • (2000) Int. J. Remote Sens. , vol.21 , pp. 1303-1330
    • Loveland, T.R.1    Reed, B.C.2    Brown, J.F.3    Ohlen, D.O.4    Zhu, Z.5    Yang, L.6    Merchant, J.W.7
  • 22
    • 84979496989 scopus 로고    scopus 로고
    • Land cover change detection by integrating object-based data blending model of Landsat and MODIS
    • Lu, M., Chen, J., Tang, H., Rao, Y., Yang, P., Wu, W., Land cover change detection by integrating object-based data blending model of Landsat and MODIS. Remote Sens. Environ. 184 (2016), 374–386.
    • (2016) Remote Sens. Environ. , vol.184 , pp. 374-386
    • Lu, M.1    Chen, J.2    Tang, H.3    Rao, Y.4    Yang, P.5    Wu, W.6
  • 23
    • 77958478647 scopus 로고    scopus 로고
    • Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data
    • Lunetta, R.S., Shao, Y., Ediriwickrema, J., Lyon, J.G., Monitoring agricultural cropping patterns across the Laurentian Great Lakes Basin using MODIS-NDVI data. Int. J. Appl. Earth Obs. Geoinf. 12 (2010), 81–88.
    • (2010) Int. J. Appl. Earth Obs. Geoinf. , vol.12 , pp. 81-88
    • Lunetta, R.S.1    Shao, Y.2    Ediriwickrema, J.3    Lyon, J.G.4
  • 26
    • 80052310104 scopus 로고    scopus 로고
    • A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests
    • Mildrexler, D.J., Zhao, M., Running, S.W., A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res., 116, 2011.
    • (2011) J. Geophys. Res. , vol.116
    • Mildrexler, D.J.1    Zhao, M.2    Running, S.W.3
  • 27
    • 84911408592 scopus 로고    scopus 로고
    • Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework
    • Omernik, J.M., Griffith, G.E., Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manage. 54 (2014), 1249–1266.
    • (2014) Environ. Manage. , vol.54 , pp. 1249-1266
    • Omernik, J.M.1    Griffith, G.E.2
  • 28
    • 48349112954 scopus 로고    scopus 로고
    • A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US
    • Ozdogan, M., Gutman, G., A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US. Remote Sens. Environ. 112 (2008), 3520–3537.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 3520-3537
    • Ozdogan, M.1    Gutman, G.2
  • 29
    • 13344278660 scopus 로고    scopus 로고
    • Random forest classifier for remote sensing classification
    • Pal, M., Random forest classifier for remote sensing classification. Int. J. Remote Sens. 26 (2005), 217–222.
    • (2005) Int. J. Remote Sens. , vol.26 , pp. 217-222
    • Pal, M.1
  • 30
    • 79958758269 scopus 로고    scopus 로고
    • Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics
    • Pervez, M.S., Brown, J.F., Mapping irrigated lands at 250-m scale by merging MODIS data and national agricultural statistics. Remote Sens. 2 (2010), 2388–2412.
    • (2010) Remote Sens. , vol.2 , pp. 2388-2412
    • Pervez, M.S.1    Brown, J.F.2
  • 31
    • 84899858948 scopus 로고    scopus 로고
    • Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI
    • Pervez, M.S., Budde, M., Rowland, J., Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI. Remote Sens. Environ. 149 (2014), 155–165.
    • (2014) Remote Sens. Environ. , vol.149 , pp. 155-165
    • Pervez, M.S.1    Budde, M.2    Rowland, J.3
  • 33
    • 77953598327 scopus 로고    scopus 로고
    • Water for agriculture: maintaining food security under growing scarcity
    • Rosegrant, M.W., Ringler, C., Zhu, T., Water for agriculture: maintaining food security under growing scarcity. Annu. Rev. Environ. Resour. 34 (2009), 205–222.
    • (2009) Annu. Rev. Environ. Resour. , vol.34 , pp. 205-222
    • Rosegrant, M.W.1    Ringler, C.2    Zhu, T.3
  • 34
    • 84925880595 scopus 로고    scopus 로고
    • Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data
    • Salmon, J.M., Friedl, M.A., Frolking, S., Wisser, D., Douglas, E.M., Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data. Int. J. Appl. Earth Obs. Geoinf. 38 (2015), 321–334.
    • (2015) Int. J. Appl. Earth Obs. Geoinf. , vol.38 , pp. 321-334
    • Salmon, J.M.1    Friedl, M.A.2    Frolking, S.3    Wisser, D.4    Douglas, E.M.5
  • 35
    • 0042553279 scopus 로고
    • Smoothing and differentiation of data by simplified least squares procedures
    • Savitzky, A., Golay, M.J., Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36 (1964), 1627–1639.
    • (1964) Anal. Chem. , vol.36 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.2
  • 37
    • 84877030266 scopus 로고    scopus 로고
    • Projections of declining surface-water availability for the southwestern United States
    • Seager, R., Ting, M., Li, C., Naik, N., Cook, B., Nakamura, J., Liu, H., Projections of declining surface-water availability for the southwestern United States. Nat. Clim. Change 3 (2012), 482–486.
    • (2012) Nat. Clim. Change , vol.3 , pp. 482-486
    • Seager, R.1    Ting, M.2    Li, C.3    Naik, N.4    Cook, B.5    Nakamura, J.6    Liu, H.7
  • 38
    • 84867055467 scopus 로고    scopus 로고
    • Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools
    • Seto, K.C., Guneralp, B., Hutyra, L.R., Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. U. S. A. 109 (2012), 16083–16088.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 16083-16088
    • Seto, K.C.1    Guneralp, B.2    Hutyra, L.R.3
  • 41
    • 85069595432 scopus 로고    scopus 로고
    • Update of the digital global map of irrigation areas to version 5. Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany and Food and Agriculture Organization of the United Nations, Rome, Italy.
    • Siebert, S., Henrich, V., Frenken, K., Burke, J., 2013. Update of the digital global map of irrigation areas to version 5. Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany and Food and Agriculture Organization of the United Nations, Rome, Italy.
    • (2013)
    • Siebert, S.1    Henrich, V.2    Frenken, K.3    Burke, J.4
  • 42
    • 85051136400 scopus 로고    scopus 로고
    • A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform
    • Teluguntla, P., Thenkabail, P.S., Oliphant, A., Xiong, J., Gumma, M.K., Congalton, R.G., Yadav, K., Huete, A., A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 144 (2018), 325–340.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.144 , pp. 325-340
    • Teluguntla, P.1    Thenkabail, P.S.2    Oliphant, A.3    Xiong, J.4    Gumma, M.K.5    Congalton, R.G.6    Yadav, K.7    Huete, A.8
  • 43
    • 84962600036 scopus 로고    scopus 로고
    • Global Cropland Area Database (GCAD) Derived from Remote Sensing in Support of Food Security in the Twenty-First Century: Current Achievements and Future Possibilities
    • Taylor & Francis Boca Raton, FL, USA
    • Teluguntla, P.G., Thenkabail, P.S., Xiong, J., Gumma, M.K., Giri, C., Milesi, C., Ozdogan, M., Congalton, R., Tilton, J., Sankey, T.T., Global Cropland Area Database (GCAD) Derived from Remote Sensing in Support of Food Security in the Twenty-First Century: Current Achievements and Future Possibilities. 2015, Taylor & Francis, Boca Raton, FL, USA.
    • (2015)
    • Teluguntla, P.G.1    Thenkabail, P.S.2    Xiong, J.3    Gumma, M.K.4    Giri, C.5    Milesi, C.6    Ozdogan, M.7    Congalton, R.8    Tilton, J.9    Sankey, T.T.10
  • 45
    • 84875982276 scopus 로고    scopus 로고
    • Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3
    • ORNL DAAC Oak Ridge, Tennessee, USA
    • Thornton, P., Thornton, M., Mayer, B., Wilhelmi, N., Wei, Y., Devarakonda, R., Cook, R., Daymet: Daily Surface Weather Data on a 1-km Grid for North America, Version 3. 2016, ORNL DAAC, Oak Ridge, Tennessee, USA.
    • (2016)
    • Thornton, P.1    Thornton, M.2    Mayer, B.3    Wilhelmi, N.4    Wei, Y.5    Devarakonda, R.6    Cook, R.7
  • 46
    • 85069595173 scopus 로고    scopus 로고
    • USDA-NASS, 2014a. 2012 Census of Agriculture Highlights: Farms and Farmland - Numbers, Acreage, Ownership, and Use
    • USDA-NASS, 2014a. 2012 Census of Agriculture Highlights: Farms and Farmland - Numbers, Acreage, Ownership, and Use, pp. 1–4.
  • 47
    • 85069596706 scopus 로고    scopus 로고
    • USDA-NASS, 2014b. 2012 Census of Agriculture, Summary and State Data, Geographic Area Series, Part 51, AC-12-A-51, Washington D.C., USA.
    • USDA-NASS, 2014b. 2012 Census of Agriculture, Summary and State Data, Geographic Area Series, Part 51, AC-12-A-51, Washington D.C., USA.
  • 49
    • 84944743397 scopus 로고    scopus 로고
    • Automated annual cropland mapping using knowledge-based temporal features
    • Waldner, F., Canto, G.S., Defourny, P., Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 110 (2015), 1–13.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.110 , pp. 1-13
    • Waldner, F.1    Canto, G.S.2    Defourny, P.3
  • 50
    • 85069553493 scopus 로고    scopus 로고
    • MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006, NASA EOSDIS Land Processes DAAC.
    • Wan, Z., Hook, S., Hulley, G., 2015. MOD11A2 MODIS/Terra Land Surface Temperature/Emissivity 8-Day L3 Global 1 km SIN Grid V006, NASA EOSDIS Land Processes DAAC.
    • (2015)
    • Wan, Z.1    Hook, S.2    Hulley, G.3
  • 51
    • 84908509239 scopus 로고    scopus 로고
    • A multi-scale accuracy assessment of the MODIS irrigated agriculture data-set (MIrAD) for the state of Nebraska, USA
    • Wardlow, B.D., Callahan, K., A multi-scale accuracy assessment of the MODIS irrigated agriculture data-set (MIrAD) for the state of Nebraska, USA. GIScience Remote Sens. 51 (2014), 575–592.
    • (2014) GIScience Remote Sens. , vol.51 , pp. 575-592
    • Wardlow, B.D.1    Callahan, K.2
  • 52
    • 39749173163 scopus 로고    scopus 로고
    • Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains
    • Wardlow, B.D., Egbert, S.L., Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains. Remote Sens. Environ. 112 (2008), 1096–1116.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1096-1116
    • Wardlow, B.D.1    Egbert, S.L.2
  • 53
    • 84922252429 scopus 로고    scopus 로고
    • Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations
    • Whitcraft, A.K., Vermote, E.F., Becker-Reshef, I., Justice, C.O., Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens. Environ. 156 (2015), 438–447.
    • (2015) Remote Sens. Environ. , vol.156 , pp. 438-447
    • Whitcraft, A.K.1    Vermote, E.F.2    Becker-Reshef, I.3    Justice, C.O.4
  • 55
    • 64549085340 scopus 로고    scopus 로고
    • Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods
    • Xian, G., Homer, C., Fry, J., Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sens. Environ. 113 (2009), 1133–1147.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1133-1147
    • Xian, G.1    Homer, C.2    Fry, J.3
  • 57
    • 85061397655 scopus 로고    scopus 로고
    • Addressing challenges for mapping irrigated fields in subhumid temperate regions by integrating remote sensing and hydroclimatic data
    • Xu, T., Deines, J., Kendall, A., Basso, B., Hyndman, D., Addressing challenges for mapping irrigated fields in subhumid temperate regions by integrating remote sensing and hydroclimatic data. Remote Sens., 11, 2019, 370.
    • (2019) Remote Sens. , vol.11 , pp. 370
    • Xu, T.1    Deines, J.2    Kendall, A.3    Basso, B.4    Hyndman, D.5
  • 58
    • 12844254599 scopus 로고    scopus 로고
    • Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States
    • Zektser, S., Loáiciga, H.A., Wolf, J., Environmental impacts of groundwater overdraft: selected case studies in the southwestern United States. Environ. Geol. 47 (2005), 396–404.
    • (2005) Environ. Geol. , vol.47 , pp. 396-404
    • Zektser, S.1    Loáiciga, H.A.2    Wolf, J.3
  • 60
    • 85019554371 scopus 로고    scopus 로고
    • Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification
    • Zhang, H.K., Roy, D.P., Using the 500 m MODIS land cover product to derive a consistent continental scale 30 m Landsat land cover classification. Remote Sens. Environ. 197 (2017), 15–34.
    • (2017) Remote Sens. Environ. , vol.197 , pp. 15-34
    • Zhang, H.K.1    Roy, D.P.2
  • 61
    • 84923804077 scopus 로고    scopus 로고
    • Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
    • Zhu, Z., Wang, S., Woodcock, C.E., Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 159 (2015), 269–277.
    • (2015) Remote Sens. Environ. , vol.159 , pp. 269-277
    • Zhu, Z.1    Wang, S.2    Woodcock, C.E.3
  • 62
    • 83455195642 scopus 로고    scopus 로고
    • Object-based cloud and cloud shadow detection in Landsat imagery
    • Zhu, Z., Woodcock, C.E., Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 118 (2012), 83–94.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 83-94
    • Zhu, Z.1    Woodcock, C.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.