-
1
-
-
85003698488
-
Crystallizing sugar science
-
Crystallizing sugar science. Nat. Med. 22, 1369 (2016).
-
(2016)
Nat. Med.
, vol.22
, pp. 1369
-
-
-
2
-
-
85050664500
-
Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer
-
COI: 1:CAS:528:DC%2BC1cXhtlClsLjE
-
Wu, D. et al. Glucose-regulated phosphorylation of TET2 by AMPK reveals a pathway linking diabetes to cancer. Nature 559, 637–641 (2018).
-
(2018)
Nature
, vol.559
, pp. 637-641
-
-
Wu, D.1
-
3
-
-
84896690513
-
Prevalence of childhood and adult obesity in the United States, 2011-2012
-
COI: 1:CAS:528:DC%2BC2cXjvVOhs74%3D
-
Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 806–814 (2014).
-
(2014)
JAMA
, vol.311
, pp. 806-814
-
-
Ogden, C.L.1
Carroll, M.D.2
Kit, B.K.3
Flegal, K.M.4
-
4
-
-
84883416199
-
Prevalence and control of diabetes in Chinese adults
-
COI: 1:CAS:528:DC%2BC3sXhsFCjsb7F
-
Xu, Y. et al. Prevalence and control of diabetes in Chinese adults. JAMA 310, 948–959 (2013).
-
(2013)
JAMA
, vol.310
, pp. 948-959
-
-
Xu, Y.1
-
5
-
-
79955940392
-
Diabetes epidemic in China and its economic impact
-
Cheng, T. O. Diabetes epidemic in China and its economic impact. Int. J. Cardiol. 149, 1–3 (2011).
-
(2011)
Int. J. Cardiol.
, vol.149
, pp. 1-3
-
-
Cheng, T.O.1
-
6
-
-
0035839040
-
Mammalian sweet taste receptors
-
COI: 1:CAS:528:DC%2BD3MXmtFKntrs%3D
-
Nelson, G. et al. Mammalian sweet taste receptors. Cell 106, 381–390 (2001).
-
(2001)
Cell
, vol.106
, pp. 381-390
-
-
Nelson, G.1
-
7
-
-
85010378578
-
The anatomy of mammalian sweet taste receptors
-
COI: 1:CAS:528:DC%2BC2sXjvFGgtw%3D%3D
-
Cheron, J. B., Golebiowski, J., Antonczak, S. & Fiorucci, S. The anatomy of mammalian sweet taste receptors. Proteins 85, 332–341 (2017).
-
(2017)
Proteins
, vol.85
, pp. 332-341
-
-
Cheron, J.B.1
Golebiowski, J.2
Antonczak, S.3
Fiorucci, S.4
-
8
-
-
84973664471
-
Why do we like sweet taste: a bitter tale?
-
COI: 1:CAS:528:DC%2BC28Xos1Wmsbs%3D
-
Beauchamp, G. K. Why do we like sweet taste: a bitter tale? Physiol. Behav. 164, 432–437 (2016).
-
(2016)
Physiol. Behav.
, vol.164
, pp. 432-437
-
-
Beauchamp, G.K.1
-
9
-
-
0033250609
-
Consumer perceptions of products containing sweeteners: USA
-
COI: 1:STN:280:DC%2BD3c7htlKmsQ%3D%3D
-
Nabors, L. O. Consumer perceptions of products containing sweeteners: USA. World Rev. Nutr. Diet. 85, 140–145 (1999).
-
(1999)
World Rev. Nutr. Diet.
, vol.85
, pp. 140-145
-
-
Nabors, L.O.1
-
10
-
-
84883183253
-
Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements
-
COI: 1:CAS:528:DC%2BC3sXhtVyqt7%2FO
-
Swithers, S. E. Artificial sweeteners produce the counterintuitive effect of inducing metabolic derangements. Trends Endocrinol. Metab. 24, 431–441 (2013).
-
(2013)
Trends Endocrinol. Metab.
, vol.24
, pp. 431-441
-
-
Swithers, S.E.1
-
11
-
-
6944239873
-
Artificial sweeteners–do they bear a carcinogenic risk?
-
COI: 1:STN:280:DC%2BD2cvlvVGqtg%3D%3D
-
Weihrauch, M. R. & Diehl, V. Artificial sweeteners–do they bear a carcinogenic risk? Ann. Oncol. 15, 1460–1465 (2004).
-
(2004)
Ann. Oncol.
, vol.15
, pp. 1460-1465
-
-
Weihrauch, M.R.1
Diehl, V.2
-
13
-
-
84879634195
-
Steviol glycosides: chemical diversity, metabolism, and function
-
COI: 1:CAS:528:DC%2BC3sXosVeit74%3D
-
Ceunen, S. & Geuns, J. M. Steviol glycosides: chemical diversity, metabolism, and function. J. Nat. Prod. 76, 1201–1228 (2013).
-
(2013)
J. Nat. Prod.
, vol.76
, pp. 1201-1228
-
-
Ceunen, S.1
Geuns, J.M.2
-
14
-
-
85016619279
-
Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity
-
COI: 1:CAS:528:DC%2BC2sXlsV2ju70%3D
-
Philippaert, K. et al. Steviol glycosides enhance pancreatic beta-cell function and taste sensation by potentiation of TRPM5 channel activity. Nat. Commun. 8, 14733 (2017).
-
(2017)
Nat. Commun.
, vol.8
-
-
Philippaert, K.1
-
15
-
-
0142058124
-
Stevioside
-
COI: 1:CAS:528:DC%2BD3sXotVeqsL4%3D
-
Geuns, J. M. Stevioside. Phytochemistry 64, 913–921 (2003).
-
(2003)
Phytochemistry
, vol.64
, pp. 913-921
-
-
Geuns, J.M.1
-
16
-
-
84863914032
-
Human psychometric and taste receptor responses to steviol glycosides
-
COI: 1:CAS:528:DC%2BC38Xnt1yhs7o%3D
-
Hellfritsch, C., Brockhoff, A., Stahler, F., Meyerhof, W. & Hofmann, T. Human psychometric and taste receptor responses to steviol glycosides. J. Agric. Food Chem. 60, 6782–6793 (2012).
-
(2012)
J. Agric. Food Chem.
, vol.60
, pp. 6782-6793
-
-
Hellfritsch, C.1
Brockhoff, A.2
Stahler, F.3
Meyerhof, W.4
Hofmann, T.5
-
17
-
-
84906701695
-
Development of next generation stevia sweetener: Rebaudioside M
-
Prakash, I., Markosyan, A. & Bunders, C. Development of next generation stevia sweetener: Rebaudioside M. Foods 3, 162–175 (2014).
-
(2014)
Foods
, vol.3
, pp. 162-175
-
-
Prakash, I.1
Markosyan, A.2
Bunders, C.3
-
18
-
-
85002057627
-
Microbial production of next-generation stevia sweeteners
-
Olsson, K. et al. Microbial production of next-generation stevia sweeteners. Micro. Cell Fact. 15, 207 (2016).
-
(2016)
Micro. Cell Fact.
, vol.15
, pp. 207
-
-
Olsson, K.1
-
19
-
-
12744278046
-
Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana
-
COI: 1:CAS:528:DC%2BD2MXhtVWjsLY%3D
-
Richman, A. et al. Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J. 41, 56–67 (2005).
-
(2005)
Plant J.
, vol.41
, pp. 56-67
-
-
Richman, A.1
-
20
-
-
49449087287
-
Glycosyltransferases: structures, functions, and mechanisms
-
COI: 1:CAS:528:DC%2BD1cXos1ekurY%3D
-
Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 521-555
-
-
Lairson, L.L.1
Henrissat, B.2
Davies, G.J.3
Withers, S.G.4
-
21
-
-
34548232365
-
Inference of macromolecular assemblies from crystalline state
-
COI: 1:CAS:528:DC%2BD2sXpvFGktb8%3D
-
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
-
(2007)
J. Mol. Biol.
, vol.372
, pp. 774-797
-
-
Krissinel, E.1
Henrick, K.2
-
22
-
-
33645281589
-
Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula
-
COI: 1:CAS:528:DC%2BD2MXht1OgtLjL
-
Shao, H. et al. Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17, 3141–3154 (2005).
-
(2005)
Plant Cell
, vol.17
, pp. 3141-3154
-
-
Shao, H.1
-
23
-
-
33645290775
-
Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification
-
COI: 1:CAS:528:DC%2BD28Xis1Gkur0%3D
-
Offen, W. et al. Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25, 1396–1405 (2006).
-
(2006)
EMBO J.
, vol.25
, pp. 1396-1405
-
-
Offen, W.1
-
24
-
-
84933073715
-
Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. insights from ab initio quantum mechanics/molecular mechanics dynamic simulations
-
COI: 1:CAS:528:DC%2BC2MXotlChsro%3D
-
Ardevol, A. & Rovira, C. Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. insights from ab initio quantum mechanics/molecular mechanics dynamic simulations. J. Am. Chem. Soc. 137, 7528–7547 (2015).
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 7528-7547
-
-
Ardevol, A.1
Rovira, C.2
-
25
-
-
79953737180
-
Overview of the CCP4 suite and current developments
-
COI: 1:CAS:528:DC%2BC3MXktFWqt70%3D
-
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
-
(2011)
Acta Crystallogr. D Biol. Crystallogr.
, vol.67
, pp. 235-242
-
-
Winn, M.D.1
-
26
-
-
79953763877
-
REFMAC5 for the refinement of macromolecular crystal structures
-
COI: 1:CAS:528:DC%2BC3MXktFWqtbk%3D
-
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular`crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).
-
(2011)
Acta Crystallogr. D Biol. Crystallogr.
, vol.67
, pp. 355-367
-
-
Murshudov, G.N.1
-
27
-
-
84946713618
-
Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea
-
COI: 1:CAS:528:DC%2BC2MXjtFaktr0%3D
-
Hiromoto, T. et al. Structural basis for acceptor-substrate recognition of UDP-glucose: anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea. Protein Sci. 24, 395–407 (2015).
-
(2015)
Protein Sci.
, vol.24
, pp. 395-407
-
-
Hiromoto, T.1
-
28
-
-
44349178127
-
ABO(H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes
-
COI: 1:CAS:528:DC%2BD1cXkt1alu70%3D
-
Alfaro, J. A. et al. ABO(H) blood group A and B glycosyltransferases recognize substrate via specific conformational changes. J. Biol. Chem. 283, 10097–10108 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10097-10108
-
-
Alfaro, J.A.1
-
29
-
-
0038339426
-
Structural and mechanistic basis of bacterial sugar nucleotide-modifying enzymes
-
COI: 1:CAS:528:DC%2BD3sXktVKruro%3D
-
Field, R. A. & Naismith, J. H. Structural and mechanistic basis of bacterial sugar nucleotide-modifying enzymes. Biochemistry 42, 7637–7647 (2003).
-
(2003)
Biochemistry
, vol.42
, pp. 7637-7647
-
-
Field, R.A.1
Naismith, J.H.2
-
30
-
-
0035113472
-
Higher plant glycosyltransferases
-
COI: 1:STN:280:DC%2BD3MrmvVyltQ%3D%3D
-
Ross, J., Li, Y., Lim, E. & Bowles, D. J. Higher plant glycosyltransferases. Genome Biol. 2, REVIEWS3004 (2001).
-
(2001)
Genome Biol.
, vol.2
-
-
Ross, J.1
Li, Y.2
Lim, E.3
Bowles, D.J.4
-
31
-
-
0036913910
-
Remarkable structural similarities between diverse glycosyltransferases
-
COI: 1:CAS:528:DC%2BD38XpslSksr4%3D
-
Hu, Y. & Walker, S. Remarkable structural similarities between diverse glycosyltransferases. Chem. Biol. 9, 1287–1296 (2002).
-
(2002)
Chem. Biol.
, vol.9
, pp. 1287-1296
-
-
Hu, Y.1
Walker, S.2
-
32
-
-
85041598524
-
DIALS: implementation and evaluation of a new integration package
-
COI: 1:CAS:528:DC%2BC1cXksFarurk%3D
-
Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D Struct. Biol. 74, 85–97 (2018).
-
(2018)
Acta Crystallogr. D Struct. Biol.
, vol.74
, pp. 85-97
-
-
Winter, G.1
-
33
-
-
34250172749
-
Crystal structure of Medicago truncatula UGT85H2–insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase
-
COI: 1:CAS:528:DC%2BD2sXmsFCksr4%3D
-
Li, L. et al. Crystal structure of Medicago truncatula UGT85H2–insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J. Mol. Biol. 370, 951–963 (2007).
-
(2007)
J. Mol. Biol.
, vol.370
, pp. 951-963
-
-
Li, L.1
-
34
-
-
77949535720
-
Features and development of Coot
-
COI: 1:CAS:528:DC%2BC3cXksFKisb8%3D
-
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
-
(2010)
Acta Crystallogr. D Biol. Crystallogr.
, vol.66
, pp. 486-501
-
-
Emsley, P.1
Lohkamp, B.2
Scott, W.G.3
Cowtan, K.4
-
35
-
-
84860290638
-
JLigand: a graphical tool for the CCP4 template-restraint library
-
COI: 1:CAS:528:DC%2BC38Xlt1Gnsr4%3D
-
Lebedev, A. A. et al. JLigand: a graphical tool for the CCP4 template-restraint library. Acta Crystallogr. D Biol. Crystallogr. 68, 431–440 (2012).
-
(2012)
Acta Crystallogr. D Biol. Crystallogr.
, vol.68
, pp. 431-440
-
-
Lebedev, A.A.1
|