메뉴 건너뛰기




Volumn 116, Issue 26, 2019, Pages 13131-13136

Molecular basis for branched steviol glucoside biosynthesis

Author keywords

Lucos ltransferase; Noncaloric sweetener; Plant biochemistr; Stevia; X ray crystal structure

Indexed keywords

GLUCOSIDE; GLUCOSYLTRANSFERASE; HISTIDINE; REBAUDIOSIDE A; STEVIOL; UNCLASSIFIED DRUG; URIDINE DIPHOSPHATE GLUCOSYLTRANSFERASE; KAURANE DERIVATIVE; PLANT PROTEIN; RECOMBINANT PROTEIN; SWEETENING AGENT; URIDINE DIPHOSPHATE;

EID: 85068192360     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1902104116     Document Type: Article
Times cited : (49)

References (41)
  • 2
    • 84879634195 scopus 로고    scopus 로고
    • Steviol glycosides: Chemical diversity, metabolism, and function
    • S. Ceunen, J. M. Geuns, Steviol glycosides: Chemical diversity, metabolism, and function. J. Nat. Prod. 76, 1201–1228 (2013).
    • (2013) J. Nat. Prod. , vol.76 , pp. 1201-1228
    • Ceunen, S.1    Geuns, J.M.2
  • 3
    • 0032441205 scopus 로고    scopus 로고
    • Stevia rebaudiana: Its agricultural, biological, and chemical properties
    • J. E. Brandle, A. N. Starratt, M. Gijzen, Stevia rebaudiana: Its agricultural, biological, and chemical properties. Can. J. Plant Sci. 78, 527–536 (1998).
    • (1998) Can. J. Plant Sci. , vol.78 , pp. 527-536
    • Brandle, J.E.1    Starratt, A.N.2    Gijzen, M.3
  • 5
    • 84953336446 scopus 로고    scopus 로고
    • Production of rebaudioside A from stevioside catalyzed by the engineered Saccharomyces cerevisiae
    • Y. Li et al., Production of rebaudioside A from stevioside catalyzed by the engineered Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 178, 1586–1598 (2016).
    • (2016) Appl. Biochem. Biotechnol. , vol.178 , pp. 1586-1598
    • Li, Y.1
  • 6
    • 34447101720 scopus 로고    scopus 로고
    • Steviol glycoside biosynthesis
    • J. E. Brandle, P. G. Telmer, Steviol glycoside biosynthesis. Phytochemistry 68, 1855–1863 (2007).
    • (2007) Phytochemistry , vol.68 , pp. 1855-1863
    • Brandle, J.E.1    Telmer, P.G.2
  • 7
    • 12744278046 scopus 로고    scopus 로고
    • Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana
    • A. Richman et al., Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J. 41, 56–67 (2005).
    • (2005) Plant J , vol.41 , pp. 56-67
    • Richman, A.1
  • 8
    • 33745189198 scopus 로고    scopus 로고
    • Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis
    • T. V. Humphrey, A. S. Richman, R. Menassa, J. E. Brandle, Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Mol. Biol. 61, 47–62 (2006).
    • (2006) Plant Mol. Biol. , vol.61 , pp. 47-62
    • Humphrey, T.V.1    Richman, A.S.2    Menassa, R.3    Brandle, J.E.4
  • 9
    • 79955603749 scopus 로고    scopus 로고
    • UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides
    • A. A. Mohamed, S. Ceunen, J. M. Geuns, W. Van den Ende, M. De Ley, UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. J. Plant Physiol. 168, 1136–1141 (2011).
    • (2011) J. Plant Physiol. , vol.168 , pp. 1136-1141
    • Mohamed, A.A.1    Ceunen, S.2    Geuns, J.M.3    Van den Ende, W.4    De Ley, M.5
  • 10
    • 84872034076 scopus 로고    scopus 로고
    • Functional and structural variation of uridine diphosphate glycosyltransferase (UGT) gene of Stevia rebaudiana-UGTSr involved in the synthesis of rebaudioside A
    • H. Madhav, S. Bhasker, M. Chinnamma, Functional and structural variation of uridine diphosphate glycosyltransferase (UGT) gene of Stevia rebaudiana-UGTSr involved in the synthesis of rebaudioside A. Plant Physiol. Biochem. 63, 245–253 (2013).
    • (2013) Plant Physiol. Biochem. , vol.63 , pp. 245-253
    • Madhav, H.1    Bhasker, S.2    Chinnamma, M.3
  • 11
    • 84899891118 scopus 로고    scopus 로고
    • Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: Mutations in UGT76G1, a key gene of steviol glycosides synthesis
    • Y. H. Yang et al., Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: Mutations in UGT76G1, a key gene of steviol glycosides synthesis. Plant Physiol. Biochem. 80, 220–225 (2014).
    • (2014) Plant Physiol. Biochem. , vol.80 , pp. 220-225
    • Yang, Y.H.1
  • 12
    • 84978872896 scopus 로고    scopus 로고
    • Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1
    • G. Dewitte et al., Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1. J. Biotechnol. 233, 49–55 (2016).
    • (2016) J. Biotechnol. , vol.233 , pp. 49-55
    • Dewitte, G.1
  • 13
    • 70349850632 scopus 로고    scopus 로고
    • Structure, mechanism and engineering of plant natural product glycosyltransferases
    • X. Wang, Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett. 583, 3303–3309 (2009).
    • (2009) FEBS Lett , vol.583 , pp. 3303-3309
    • Wang, X.1
  • 15
    • 33645281589 scopus 로고    scopus 로고
    • Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula
    • H. Shao et al., Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17, 3141–3154 (2005).
    • (2005) Plant Cell , vol.17 , pp. 3141-3154
    • Shao, H.1
  • 16
    • 84994741721 scopus 로고    scopus 로고
    • Crystal structure of Os79 (Os04g0206600) from Oryza sativa: A UDP-glucosyltransferase involved in the detoxification of deoxynivalenol
    • K. M. Wetterhorn et al., Crystal structure of Os79 (Os04g0206600) from Oryza sativa: A UDP-glucosyltransferase involved in the detoxification of deoxynivalenol. Biochemistry 55, 6175–6186 (2016).
    • (2016) Biochemistry , vol.55 , pp. 6175-6186
    • Wetterhorn, K.M.1
  • 17
    • 33645290775 scopus 로고    scopus 로고
    • Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification
    • W. Offen et al., Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25, 1396–1405 (2006).
    • (2006) EMBO J , vol.25 , pp. 1396-1405
    • Offen, W.1
  • 18
    • 34250172749 scopus 로고    scopus 로고
    • Crystal structure of Medicago truncatula UGT85H2–insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase
    • L. Li et al., Crystal structure of Medicago truncatula UGT85H2–insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J. Mol. Biol. 370, 951–963 (2007).
    • (2007) J. Mol. Biol. , vol.370 , pp. 951-963
    • Li, L.1
  • 19
    • 70149104455 scopus 로고    scopus 로고
    • Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids
    • L. V. Modolo et al., Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids. J. Mol. Biol. 392, 1292–1302 (2009).
    • (2009) J. Mol. Biol. , vol.392 , pp. 1292-1302
    • Modolo, L.V.1
  • 20
    • 38049146159 scopus 로고    scopus 로고
    • Characterization and engineering of the bifunctional N- And O-glucosyltransferase involved in xenobiotic metabolism in plants
    • M. Brazier-Hicks et al., Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc. Natl. Acad. Sci. U.S.A. 104, 20238–20243 (2007).
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 20238-20243
    • Brazier-Hicks, M.1
  • 21
    • 84946713618 scopus 로고    scopus 로고
    • Structural basis for acceptor-substrate recognition of UDP-glucose: Anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea
    • T. Hiromoto et al., Structural basis for acceptor-substrate recognition of UDP-glucose: Anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea. Protein Sci. 24, 395–407 (2015).
    • (2015) Protein Sci , vol.24 , pp. 395-407
    • Hiromoto, T.1
  • 22
    • 85031688366 scopus 로고    scopus 로고
    • Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana
    • A. M. George Thompson, C. V. Iancu, K. E. Neet, J. V. Dean, J. Y. Choe, Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana. Sci. Rep. 7, 46629 (2017).
    • (2017) Sci. Rep. , vol.7 , pp. 46629
    • George Thompson, A.M.1    Iancu, C.V.2    Neet, K.E.3    Dean, J.V.4    Choe, J.Y.5
  • 23
    • 85042039219 scopus 로고    scopus 로고
    • Employing a biochemical protecting group for a sustainable indigo dyeing strategy
    • T. M. Hsu et al., Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat. Chem. Biol. 14, 256–261 (2018).
    • (2018) Nat. Chem. Biol. , vol.14 , pp. 256-261
    • Hsu, T.M.1
  • 25
    • 0028312482 scopus 로고
    • Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons
    • J. Hughes, M. A. Hughes, Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Seq. 5, 41–49 (1994).
    • (1994) DNA Seq , vol.5 , pp. 41-49
    • Hughes, J.1    Hughes, M.A.2
  • 26
    • 84906701695 scopus 로고    scopus 로고
    • Development of next generation stevia sweetener: Rebaudioside M
    • I. Prakash, A. Markosyan, C. Bunders, Development of next generation stevia sweetener: Rebaudioside M. Foods 3, 162–175 (2014).
    • (2014) Foods , vol.3 , pp. 162-175
    • Prakash, I.1    Markosyan, A.2    Bunders, C.3
  • 27
    • 84996598490 scopus 로고    scopus 로고
    • The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii
    • M. Itkin et al., The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proc. Natl. Acad. Sci. U.S.A. 113, E7619–E7628 (2016).
    • (2016) Proc. Natl. Acad. Sci. U.S.A. , vol.113 , pp. E7619-E7628
    • Itkin, M.1
  • 28
    • 33748302743 scopus 로고    scopus 로고
    • Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions
    • C. Zhang et al., Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313, 1291–1294 (2006).
    • (2006) Science , vol.313 , pp. 1291-1294
    • Zhang, C.1
  • 29
    • 33751074907 scopus 로고    scopus 로고
    • Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis
    • L. L. Lairson, A. G. Watts, W. W. Wakarchuk, S. G. Withers, Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis. Nat. Chem. Biol. 2, 724–728 (2006).
    • (2006) Nat. Chem. Biol. , vol.2 , pp. 724-728
    • Lairson, L.L.1    Watts, A.G.2    Wakarchuk, W.W.3    Withers, S.G.4
  • 30
    • 47049087906 scopus 로고    scopus 로고
    • A kinetic analysis of re-giospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: Domain swapping to introduce new activities
    • A. M. Cartwright, E. K. Lim, C. Kleanthous, D. J. Bowles, A kinetic analysis of re-giospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: Domain swapping to introduce new activities. J. Biol. Chem. 283, 15724–15731 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 15724-15731
    • Cartwright, A.M.1    Lim, E.K.2    Kleanthous, C.3    Bowles, D.J.4
  • 31
    • 80055088136 scopus 로고    scopus 로고
    • Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation
    • A. Chang, S. Singh, G. N. Phillips, Jr, J. S. Thorson, Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr. Opin. Biotechnol. 22, 800–808 (2011).
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 800-808
    • Chang, A.1    Singh, S.2    Phillips, G.N.3    Thorson, J.S.4
  • 32
    • 84976430995 scopus 로고    scopus 로고
    • Structure and mechanism of isopropylmalate dehydrogenase from Arabidopsis thaliana: Insights on leucine and aliphatic glucosinolate biosynthesis
    • S. G. Lee, R. Nwumeh, J. M. Jez, Structure and mechanism of isopropylmalate dehydrogenase from Arabidopsis thaliana: Insights on leucine and aliphatic glucosinolate biosynthesis. J. Biol. Chem. 291, 13421–13430 (2016).
    • (2016) J. Biol. Chem. , vol.291 , pp. 13421-13430
    • Lee, S.G.1    Nwumeh, R.2    Jez, J.M.3
  • 33
    • 33847290484 scopus 로고    scopus 로고
    • Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems
    • S. Doublié, Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems. Methods Mol. Biol. 363, 91–108 (2007).
    • (2007) Methods Mol. Biol. , vol.363 , pp. 91-108
    • Doublié, S.1
  • 34
    • 0031059866 scopus 로고    scopus 로고
    • Processing of x-ray diffraction data collected in oscillation mode
    • Z. Otwinowski, W. Minor, Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
    • (1997) Methods Enzymol , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 35
    • 37549039510 scopus 로고    scopus 로고
    • A short history of SHELX
    • G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
    • (2008) Acta Crystallogr. A , vol.64 , pp. 112-122
    • Sheldrick, G.M.1
  • 37
    • 0347383760 scopus 로고    scopus 로고
    • ARP/wARP and automatic interpretation of protein electron density maps
    • R. J. Morris, A. Perrakis, V. S. Lamzin, ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003).
    • (2003) Methods Enzymol , vol.374 , pp. 229-244
    • Morris, R.J.1    Perrakis, A.2    Lamzin, V.S.3
  • 39
    • 76449098262 scopus 로고    scopus 로고
    • Phenix: A comprehensive Python-based system for macromolecular structure solution
    • P. D. Adams et al., PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
    • (2010) Acta Crystallogr. D Biol. Crystallogr. , vol.66 , pp. 213-221
    • Adams, P.D.1
  • 40
    • 34447508216 scopus 로고    scopus 로고
    • Phaser crystallographic software
    • A. J. McCoy et al., Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
    • (2007) J. Appl. Crystallogr. , vol.40 , pp. 658-674
    • McCoy, A.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.