-
1
-
-
84893519188
-
Biotechnological production of natural zero-calorie sweeteners
-
R. N. Philippe, M. De Mey, J. Anderson, P. K. Ajikumar, Biotechnological production of natural zero-calorie sweeteners. Curr. Opin. Biotechnol. 26, 155–161 (2014).
-
(2014)
Curr. Opin. Biotechnol.
, vol.26
, pp. 155-161
-
-
Philippe, R.N.1
De Mey, M.2
Anderson, J.3
Ajikumar, P.K.4
-
2
-
-
84879634195
-
Steviol glycosides: Chemical diversity, metabolism, and function
-
S. Ceunen, J. M. Geuns, Steviol glycosides: Chemical diversity, metabolism, and function. J. Nat. Prod. 76, 1201–1228 (2013).
-
(2013)
J. Nat. Prod.
, vol.76
, pp. 1201-1228
-
-
Ceunen, S.1
Geuns, J.M.2
-
3
-
-
0032441205
-
Stevia rebaudiana: Its agricultural, biological, and chemical properties
-
J. E. Brandle, A. N. Starratt, M. Gijzen, Stevia rebaudiana: Its agricultural, biological, and chemical properties. Can. J. Plant Sci. 78, 527–536 (1998).
-
(1998)
Can. J. Plant Sci.
, vol.78
, pp. 527-536
-
-
Brandle, J.E.1
Starratt, A.N.2
Gijzen, M.3
-
4
-
-
45949084226
-
Development of rebiana, a natural, non-caloric sweetener
-
I. Prakash, G. E. Dubois, J. F. Clos, K. L. Wilkens, L. E. Fosdick, Development of rebiana, a natural, non-caloric sweetener. Food Chem. Toxicol. 46 (suppl. 7), S75–S82 (2008).
-
(2008)
Food Chem. Toxicol.
, vol.46
, pp. S75-S82
-
-
Prakash, I.1
Dubois, G.E.2
Clos, J.F.3
Wilkens, K.L.4
Fosdick, L.E.5
-
5
-
-
84953336446
-
Production of rebaudioside A from stevioside catalyzed by the engineered Saccharomyces cerevisiae
-
Y. Li et al., Production of rebaudioside A from stevioside catalyzed by the engineered Saccharomyces cerevisiae. Appl. Biochem. Biotechnol. 178, 1586–1598 (2016).
-
(2016)
Appl. Biochem. Biotechnol.
, vol.178
, pp. 1586-1598
-
-
Li, Y.1
-
6
-
-
34447101720
-
Steviol glycoside biosynthesis
-
J. E. Brandle, P. G. Telmer, Steviol glycoside biosynthesis. Phytochemistry 68, 1855–1863 (2007).
-
(2007)
Phytochemistry
, vol.68
, pp. 1855-1863
-
-
Brandle, J.E.1
Telmer, P.G.2
-
7
-
-
12744278046
-
Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana
-
A. Richman et al., Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J. 41, 56–67 (2005).
-
(2005)
Plant J
, vol.41
, pp. 56-67
-
-
Richman, A.1
-
8
-
-
33745189198
-
Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis
-
T. V. Humphrey, A. S. Richman, R. Menassa, J. E. Brandle, Spatial organisation of four enzymes from Stevia rebaudiana that are involved in steviol glycoside synthesis. Plant Mol. Biol. 61, 47–62 (2006).
-
(2006)
Plant Mol. Biol.
, vol.61
, pp. 47-62
-
-
Humphrey, T.V.1
Richman, A.S.2
Menassa, R.3
Brandle, J.E.4
-
9
-
-
79955603749
-
UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides
-
A. A. Mohamed, S. Ceunen, J. M. Geuns, W. Van den Ende, M. De Ley, UDP-dependent glycosyltransferases involved in the biosynthesis of steviol glycosides. J. Plant Physiol. 168, 1136–1141 (2011).
-
(2011)
J. Plant Physiol.
, vol.168
, pp. 1136-1141
-
-
Mohamed, A.A.1
Ceunen, S.2
Geuns, J.M.3
Van den Ende, W.4
De Ley, M.5
-
10
-
-
84872034076
-
Functional and structural variation of uridine diphosphate glycosyltransferase (UGT) gene of Stevia rebaudiana-UGTSr involved in the synthesis of rebaudioside A
-
H. Madhav, S. Bhasker, M. Chinnamma, Functional and structural variation of uridine diphosphate glycosyltransferase (UGT) gene of Stevia rebaudiana-UGTSr involved in the synthesis of rebaudioside A. Plant Physiol. Biochem. 63, 245–253 (2013).
-
(2013)
Plant Physiol. Biochem.
, vol.63
, pp. 245-253
-
-
Madhav, H.1
Bhasker, S.2
Chinnamma, M.3
-
11
-
-
84899891118
-
Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: Mutations in UGT76G1, a key gene of steviol glycosides synthesis
-
Y. H. Yang et al., Base substitution mutations in uridinediphosphate-dependent glycosyltransferase 76G1 gene of Stevia rebaudiana causes the low levels of rebaudioside A: Mutations in UGT76G1, a key gene of steviol glycosides synthesis. Plant Physiol. Biochem. 80, 220–225 (2014).
-
(2014)
Plant Physiol. Biochem.
, vol.80
, pp. 220-225
-
-
Yang, Y.H.1
-
12
-
-
84978872896
-
Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1
-
G. Dewitte et al., Screening of recombinant glycosyltransferases reveals the broad acceptor specificity of stevia UGT-76G1. J. Biotechnol. 233, 49–55 (2016).
-
(2016)
J. Biotechnol.
, vol.233
, pp. 49-55
-
-
Dewitte, G.1
-
13
-
-
70349850632
-
Structure, mechanism and engineering of plant natural product glycosyltransferases
-
X. Wang, Structure, mechanism and engineering of plant natural product glycosyltransferases. FEBS Lett. 583, 3303–3309 (2009).
-
(2009)
FEBS Lett
, vol.583
, pp. 3303-3309
-
-
Wang, X.1
-
14
-
-
84891763855
-
The carbohydrate-active enzymes database (CAZy) in 2013
-
V. Lombard, H. Golaconda Ramulu, E. Drula, P. M. Coutinho, B. Henrissat, The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).
-
(2014)
Nucleic Acids Res
, vol.42
, pp. D490-D495
-
-
Lombard, V.1
Golaconda Ramulu, H.2
Drula, E.3
Coutinho, P.M.4
Henrissat, B.5
-
15
-
-
33645281589
-
Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula
-
H. Shao et al., Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from Medicago truncatula. Plant Cell 17, 3141–3154 (2005).
-
(2005)
Plant Cell
, vol.17
, pp. 3141-3154
-
-
Shao, H.1
-
16
-
-
84994741721
-
Crystal structure of Os79 (Os04g0206600) from Oryza sativa: A UDP-glucosyltransferase involved in the detoxification of deoxynivalenol
-
K. M. Wetterhorn et al., Crystal structure of Os79 (Os04g0206600) from Oryza sativa: A UDP-glucosyltransferase involved in the detoxification of deoxynivalenol. Biochemistry 55, 6175–6186 (2016).
-
(2016)
Biochemistry
, vol.55
, pp. 6175-6186
-
-
Wetterhorn, K.M.1
-
17
-
-
33645290775
-
Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification
-
W. Offen et al., Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. EMBO J. 25, 1396–1405 (2006).
-
(2006)
EMBO J
, vol.25
, pp. 1396-1405
-
-
Offen, W.1
-
18
-
-
34250172749
-
Crystal structure of Medicago truncatula UGT85H2–insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase
-
L. Li et al., Crystal structure of Medicago truncatula UGT85H2–insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase. J. Mol. Biol. 370, 951–963 (2007).
-
(2007)
J. Mol. Biol.
, vol.370
, pp. 951-963
-
-
Li, L.1
-
19
-
-
70149104455
-
Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids
-
L. V. Modolo et al., Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids. J. Mol. Biol. 392, 1292–1302 (2009).
-
(2009)
J. Mol. Biol.
, vol.392
, pp. 1292-1302
-
-
Modolo, L.V.1
-
20
-
-
38049146159
-
Characterization and engineering of the bifunctional N- And O-glucosyltransferase involved in xenobiotic metabolism in plants
-
M. Brazier-Hicks et al., Characterization and engineering of the bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. Proc. Natl. Acad. Sci. U.S.A. 104, 20238–20243 (2007).
-
(2007)
Proc. Natl. Acad. Sci. U.S.A.
, vol.104
, pp. 20238-20243
-
-
Brazier-Hicks, M.1
-
21
-
-
84946713618
-
Structural basis for acceptor-substrate recognition of UDP-glucose: Anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea
-
T. Hiromoto et al., Structural basis for acceptor-substrate recognition of UDP-glucose: Anthocyanidin 3-O-glucosyltransferase from Clitoria ternatea. Protein Sci. 24, 395–407 (2015).
-
(2015)
Protein Sci
, vol.24
, pp. 395-407
-
-
Hiromoto, T.1
-
22
-
-
85031688366
-
Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana
-
A. M. George Thompson, C. V. Iancu, K. E. Neet, J. V. Dean, J. Y. Choe, Differences in salicylic acid glucose conjugations by UGT74F1 and UGT74F2 from Arabidopsis thaliana. Sci. Rep. 7, 46629 (2017).
-
(2017)
Sci. Rep.
, vol.7
, pp. 46629
-
-
George Thompson, A.M.1
Iancu, C.V.2
Neet, K.E.3
Dean, J.V.4
Choe, J.Y.5
-
23
-
-
85042039219
-
Employing a biochemical protecting group for a sustainable indigo dyeing strategy
-
T. M. Hsu et al., Employing a biochemical protecting group for a sustainable indigo dyeing strategy. Nat. Chem. Biol. 14, 256–261 (2018).
-
(2018)
Nat. Chem. Biol.
, vol.14
, pp. 256-261
-
-
Hsu, T.M.1
-
24
-
-
49449087287
-
Glycosyltransferases: Structures, functions, and mechanisms
-
L. L. Lairson, B. Henrissat, G. J. Davies, S. G. Withers, Glycosyltransferases: Structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).
-
(2008)
Annu. Rev. Biochem.
, vol.77
, pp. 521-555
-
-
Lairson, L.L.1
Henrissat, B.2
Davies, G.J.3
Withers, S.G.4
-
25
-
-
0028312482
-
Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons
-
J. Hughes, M. A. Hughes, Multiple secondary plant product UDP-glucose glucosyltransferase genes expressed in cassava (Manihot esculenta Crantz) cotyledons. DNA Seq. 5, 41–49 (1994).
-
(1994)
DNA Seq
, vol.5
, pp. 41-49
-
-
Hughes, J.1
Hughes, M.A.2
-
26
-
-
84906701695
-
Development of next generation stevia sweetener: Rebaudioside M
-
I. Prakash, A. Markosyan, C. Bunders, Development of next generation stevia sweetener: Rebaudioside M. Foods 3, 162–175 (2014).
-
(2014)
Foods
, vol.3
, pp. 162-175
-
-
Prakash, I.1
Markosyan, A.2
Bunders, C.3
-
27
-
-
84996598490
-
The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii
-
M. Itkin et al., The biosynthetic pathway of the nonsugar, high-intensity sweetener mogroside V from Siraitia grosvenorii. Proc. Natl. Acad. Sci. U.S.A. 113, E7619–E7628 (2016).
-
(2016)
Proc. Natl. Acad. Sci. U.S.A.
, vol.113
, pp. E7619-E7628
-
-
Itkin, M.1
-
28
-
-
33748302743
-
Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions
-
C. Zhang et al., Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313, 1291–1294 (2006).
-
(2006)
Science
, vol.313
, pp. 1291-1294
-
-
Zhang, C.1
-
29
-
-
33751074907
-
Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis
-
L. L. Lairson, A. G. Watts, W. W. Wakarchuk, S. G. Withers, Using substrate engineering to harness enzymatic promiscuity and expand biological catalysis. Nat. Chem. Biol. 2, 724–728 (2006).
-
(2006)
Nat. Chem. Biol.
, vol.2
, pp. 724-728
-
-
Lairson, L.L.1
Watts, A.G.2
Wakarchuk, W.W.3
Withers, S.G.4
-
30
-
-
47049087906
-
A kinetic analysis of re-giospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: Domain swapping to introduce new activities
-
A. M. Cartwright, E. K. Lim, C. Kleanthous, D. J. Bowles, A kinetic analysis of re-giospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: Domain swapping to introduce new activities. J. Biol. Chem. 283, 15724–15731 (2008).
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 15724-15731
-
-
Cartwright, A.M.1
Lim, E.K.2
Kleanthous, C.3
Bowles, D.J.4
-
31
-
-
80055088136
-
Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation
-
A. Chang, S. Singh, G. N. Phillips, Jr, J. S. Thorson, Glycosyltransferase structural biology and its role in the design of catalysts for glycosylation. Curr. Opin. Biotechnol. 22, 800–808 (2011).
-
(2011)
Curr. Opin. Biotechnol.
, vol.22
, pp. 800-808
-
-
Chang, A.1
Singh, S.2
Phillips, G.N.3
Thorson, J.S.4
-
32
-
-
84976430995
-
Structure and mechanism of isopropylmalate dehydrogenase from Arabidopsis thaliana: Insights on leucine and aliphatic glucosinolate biosynthesis
-
S. G. Lee, R. Nwumeh, J. M. Jez, Structure and mechanism of isopropylmalate dehydrogenase from Arabidopsis thaliana: Insights on leucine and aliphatic glucosinolate biosynthesis. J. Biol. Chem. 291, 13421–13430 (2016).
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 13421-13430
-
-
Lee, S.G.1
Nwumeh, R.2
Jez, J.M.3
-
33
-
-
33847290484
-
Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems
-
S. Doublié, Production of selenomethionyl proteins in prokaryotic and eukaryotic expression systems. Methods Mol. Biol. 363, 91–108 (2007).
-
(2007)
Methods Mol. Biol.
, vol.363
, pp. 91-108
-
-
Doublié, S.1
-
34
-
-
0031059866
-
Processing of x-ray diffraction data collected in oscillation mode
-
Z. Otwinowski, W. Minor, Processing of x-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
-
(1997)
Methods Enzymol
, vol.276
, pp. 307-326
-
-
Otwinowski, Z.1
Minor, W.2
-
35
-
-
37549039510
-
A short history of SHELX
-
G. M. Sheldrick, A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008).
-
(2008)
Acta Crystallogr. A
, vol.64
, pp. 112-122
-
-
Sheldrick, G.M.1
-
37
-
-
0347383760
-
ARP/wARP and automatic interpretation of protein electron density maps
-
R. J. Morris, A. Perrakis, V. S. Lamzin, ARP/wARP and automatic interpretation of protein electron density maps. Methods Enzymol. 374, 229–244 (2003).
-
(2003)
Methods Enzymol
, vol.374
, pp. 229-244
-
-
Morris, R.J.1
Perrakis, A.2
Lamzin, V.S.3
-
38
-
-
77949535720
-
Features and development of Coot
-
P. Emsley, B. Lohkamp, W. G. Scott, K. Cowtan, Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
-
(2010)
Acta Crystallogr. D Biol. Crystallogr.
, vol.66
, pp. 486-501
-
-
Emsley, P.1
Lohkamp, B.2
Scott, W.G.3
Cowtan, K.4
-
39
-
-
76449098262
-
Phenix: A comprehensive Python-based system for macromolecular structure solution
-
P. D. Adams et al., PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
-
(2010)
Acta Crystallogr. D Biol. Crystallogr.
, vol.66
, pp. 213-221
-
-
Adams, P.D.1
-
40
-
-
34447508216
-
Phaser crystallographic software
-
A. J. McCoy et al., Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
-
(2007)
J. Appl. Crystallogr.
, vol.40
, pp. 658-674
-
-
McCoy, A.J.1
-
41
-
-
0028200875
-
A continuous spectrophotometric assay for glycosyltransferases
-
S. Gosselin, M. Alhussaini, M. B. Streiff, K. Takabayashi, M. M. Palcic, A continuous spectrophotometric assay for glycosyltransferases. Anal. Biochem. 220, 92–97 (1994).
-
(1994)
Anal. Biochem.
, vol.220
, pp. 92-97
-
-
Gosselin, S.1
Alhussaini, M.2
Streiff, M.B.3
Takabayashi, K.4
Palcic, M.M.5
|