메뉴 건너뛰기




Volumn 374, Issue 1776, 2019, Pages

How decision makers can use quantitative approaches to guide outbreak responses

Author keywords

Decision making; Infectious diseases; Modelling; Outbreaks

Indexed keywords

ANALYTICAL METHOD; DECISION MAKING; DISEASE CONTROL; EPIDEMIOLOGY; INFECTIOUS DISEASE; NUMERICAL MODEL; POLICY STRATEGY; POPULATION OUTBREAK; QUANTITATIVE ANALYSIS;

EID: 85065418894     PISSN: 09628436     EISSN: 14712970     Source Type: Journal    
DOI: 10.1098/rstb.2018.0365     Document Type: Review
Times cited : (44)

References (30)
  • 1
    • 84924787757 scopus 로고    scopus 로고
    • Modeling infectious disease dynamics in the complex landscape of global health
    • Heesterbeek H et al. 2015 Modeling infectious disease dynamics in the complex landscape of global health. Science 347, aaa4339. (doi:10.1126/ science.aaa4339)
    • (2015) Science , vol.347 , pp. aaa4339
    • Heesterbeek, H.1
  • 2
    • 77952582469 scopus 로고    scopus 로고
    • Transmission dynamic modelling of the impact of human papillomavirus vaccination in the United Kingdom
    • Choi YH, Jit M, Gay N, Cox A, Garnett GP, Edmunds WJ. 2010 Transmission dynamic modelling of the impact of human papillomavirus vaccination in the United Kingdom. Vaccine 28, 4091-4102. (doi:10. 1016/j.vaccine.2009.09.125)
    • (2010) Vaccine , vol.28 , pp. 4091-4102
    • Choi, Y.H.1    Jit, M.2    Gay, N.3    Cox, A.4    Garnett, G.P.5    Edmunds, W.J.6
  • 3
    • 84992397204 scopus 로고    scopus 로고
    • Cost-effectiveness and resource implications of aggressive action on tuberculosis in China, India, and South Africa: A combined analysis of nine models
    • Menzies NA et al. 2016 Cost-effectiveness and resource implications of aggressive action on tuberculosis in China, India, and South Africa: a combined analysis of nine models. Lancet Glob. Health 4, e816-e826. (doi:10.1016/S2214-109X(16)30265-0)
    • (2016) Lancet Glob. Health , vol.4 , pp. e816-e826
    • Menzies, N.A.1
  • 4
    • 84959524242 scopus 로고    scopus 로고
    • Modeling and cost-effectiveness in HIV prevention
    • Jacobsen MM, Walensky RP. 2016 Modeling and cost-effectiveness in HIV prevention. Curr. HIV/AIDS Rep. 13, 64-75. (doi:10.1007/s11904-016-0303-2)
    • (2016) Curr. HIV/AIDS Rep. , vol.13 , pp. 64-75
    • Jacobsen, M.M.1    Walensky, R.P.2
  • 6
    • 84908031199 scopus 로고    scopus 로고
    • Visualization and analytics tools for infectious disease epidemiology: A systematic review
    • Carroll LN, Au AP, Detwiler LT, Fu TC, Painter IS, Abernethy NF. 2014 Visualization and analytics tools for infectious disease epidemiology: a systematic review. J. Biomed. Inform. 51, 287-298. (doi:10. 1016/j.jbi.2014.04.006)
    • (2014) J. Biomed. Inform. , vol.51 , pp. 287-298
    • Carroll, L.N.1    Au, A.P.2    Detwiler, L.T.3    Fu, T.C.4    Painter, I.S.5    Abernethy, N.F.6
  • 7
    • 84943565012 scopus 로고    scopus 로고
    • Spatial methods for infectious disease outbreak investigations: Systematic literature review
    • Smith CM, Le Comber SC, Fry H, Bull M, Leach S, Hayward AC. 2015 Spatial methods for infectious disease outbreak investigations: systematic literature review. Eurosurveill. 20, 30026. (doi:10.2807/1560-7917.ES.2015.20.39.30026)
    • (2015) Eurosurveill , vol.20 , pp. 30026
    • Smith, C.M.1    Le Comber, S.C.2    Fry, H.3    Bull, M.4    Leach, S.5    Hayward, A.C.6
  • 8
    • 84969760218 scopus 로고    scopus 로고
    • Future directions in analytics for infectious disease intelligence: Toward an integrated warning system for emerging pathogens
    • Han BA, Drake JM. 2016 Future directions in analytics for infectious disease intelligence: toward an integrated warning system for emerging pathogens. EMBO Rep. 17, 785-789. (doi:10. 15252/embr.201642534.)
    • (2016) EMBO Rep , vol.17 , pp. 785-789
    • Han, B.A.1    Drake, J.M.2
  • 9
    • 85065386737 scopus 로고    scopus 로고
    • Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases
    • Thompson RN, Morgan OW, Jalava K. 2019 Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases. Phil. Trans. R. Soc. B 374, 20180431. (doi:10.1098/rstb.2018.0431)
    • (2019) Phil. Trans. R. Soc. B , vol.374 , pp. 20180431
    • Thompson, R.N.1    Morgan, O.W.2    Jalava, K.3
  • 10
    • 0004145383 scopus 로고    scopus 로고
    • Oxford, UK: University Oxford Press
    • Gregg M. 2008 Field epidemiology. Oxford, UK: University Oxford Press.
    • (2008) Field Epidemiology
    • Gregg, M.1
  • 11
    • 0034841908 scopus 로고    scopus 로고
    • The changing assessments of John Snow's and William Farr's cholera studies
    • Eyler JM. 2001 The changing assessments of John Snow's and William Farr's cholera studies. Soz. Praventivmed. 46, 225-232. (doi:10.1007/ BF01593177)
    • (2001) Soz. Praventivmed. , vol.46 , pp. 225-232
    • Eyler, J.M.1
  • 12
    • 84901236615 scopus 로고    scopus 로고
    • OutbreakTools: A new platform for disease outbreak analysis using the R software
    • Jombart T et al. 2014 OutbreakTools: a new platform for disease outbreak analysis using the R software. Epidemics 7, 28-34. (doi:10.1016/j. epidem.2014.04.003)
    • (2014) Epidemics , vol.7 , pp. 28-34
    • Jombart, T.1
  • 13
    • 84881859069 scopus 로고    scopus 로고
    • accessed 15 January 2019
    • Gapminder. https://www.gapminder.org/ (accessed 15 January 2019).
    • Gapminder
  • 14
    • 84999737856 scopus 로고    scopus 로고
    • Exposure patterns driving Ebola transmission in West Africa: A retrospective observational study
    • International Ebola Response Team. 2016 Exposure patterns driving Ebola transmission in West Africa: a retrospective observational study. PLoS Med. 13, e1002170. (doi:10.1371/journal.pmed.1002170)
    • (2016) PLoS Med , vol.13
  • 16
    • 85018436277 scopus 로고    scopus 로고
    • Spatio-temporal analysis of epidemic phenomena using the R package surveillance
    • Meyer S, Held H, Höhle M. 2017 Spatio-temporal analysis of epidemic phenomena using the R package surveillance. J. Stat. Softw. 77, 6. (doi:10. 18637/jss.v077.i11)
    • (2017) J. Stat. Softw. , vol.77 , pp. 6
    • Meyer, S.1    Held, H.2    Höhle, M.3
  • 17
    • 85030247680 scopus 로고    scopus 로고
    • Bioinformatic analyses of whole-genome sequence data in a public health laboratory
    • Oakeson KF, Wagner JM, Mendenhall M, Rohrwasser A, Atkinson-Dunn. 2017 Bioinformatic analyses of whole-genome sequence data in a public health laboratory. Emerg. Infect. Dis. 23, 1441-1445. (doi:10.3201/eid2309.170416)
    • (2017) Emerg. Infect. Dis. , vol.23 , pp. 1441-1445
    • Oakeson, K.F.1    Wagner, J.M.2    Mendenhall, M.3    Rohrwasser, A.4    Atkinson-Dunn5
  • 18
    • 85084326675 scopus 로고    scopus 로고
    • Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases
    • Arias A et al. 2016 Rapid outbreak sequencing of Ebola virus in Sierra Leone identifies transmission chains linked to sporadic cases. Virus Evol. 2, vew016. (doi:10.1093/ve/vew016)
    • (2016) Virus Evol , vol.2 , pp. vew016
    • Arias, A.1
  • 19
    • 84962409092 scopus 로고    scopus 로고
    • Transforming clinical data into actionable prognosis models: Machine-learning framework and field-deployable app to predict outcome of Ebola patients
    • Colubri A, Silver T, Fradet T, Retzepi K, Fry B, Sabeti P. 2016 Transforming clinical data into actionable prognosis models: machine-learning framework and field-deployable app to predict outcome of Ebola patients. PLoS Negl. Trop. Dis. 10, e0004549. (doi:10.1371/journal.pntd.0004549)
    • (2016) PLoS Negl. Trop. Dis. , vol.10
    • Colubri, A.1    Silver, T.2    Fradet, T.3    Retzepi, K.4    Fry, B.5    Sabeti, P.6
  • 20
    • 84949974839 scopus 로고    scopus 로고
    • A review of epidemiological parameters from Ebola outbreaks to inform early public health decision-making
    • Van Kerkhove MD, Bento AI, Mills HL, Ferguson NM, Donnelly CA. 2015 A review of epidemiological parameters from Ebola outbreaks to inform early public health decision-making. Sci. Data 2, 150019. (doi:10.1038/sdata.2015.19)
    • (2015) Sci. Data , vol.2 , pp. 150019
    • Van Kerkhove, M.D.1    Bento, A.I.2    Mills, H.L.3    Ferguson, N.M.4    Donnelly, C.A.5
  • 22
    • 85032877261 scopus 로고    scopus 로고
    • A remote sensing data based artificial neural network approach for predicting climate-sensitive infectious disease outbreaks: A case study of human brucellosis
    • Wang J et al. 2017 A remote sensing data based artificial neural network approach for predicting climate-sensitive infectious disease outbreaks: a case study of human brucellosis. Remote Sens. 9, 1018. (doi:10.3390/rs9101018)
    • (2017) Remote Sens , vol.9 , pp. 1018
    • Wang, J.1
  • 23
    • 85042687237 scopus 로고    scopus 로고
    • Control fast or control smart: When should invading pathogens be controlled?
    • Thompson RN, Gilligan CA, Cunniffe NJ. 2018 Control fast or control smart: when should invading pathogens be controlled? PLoS Comp. Biol. 14, e1006014. (doi:10.1371/journal.pcbi.1006014)
    • (2018) PLoS Comp. Biol. , vol.14
    • Thompson, R.N.1    Gilligan, C.A.2    Cunniffe, N.J.3
  • 24
    • 85046900632 scopus 로고    scopus 로고
    • Real-time modeling should be routinely integrated into outbreak response
    • Bausch DG, Edmunds J. 2018 Real-time modeling should be routinely integrated into outbreak response. Am. J. Trop. Med. Hyg. 98, 1214-1215. (doi:10.4269/ajtmh.18-0150)
    • (2018) Am. J. Trop. Med. Hyg. , vol.98 , pp. 1214-1215
    • Bausch, D.G.1    Edmunds, J.2
  • 25
    • 85011564547 scopus 로고    scopus 로고
    • Modeling in real time during the Ebola response
    • Meltzer M et al. 2016 Modeling in real time during the Ebola response. MMWR Suppl. 65, 85-89 (doi:10.15585/mmwr.su6503a12)
    • (2016) MMWR Suppl , vol.65 , pp. 85-89
    • Meltzer, M.1
  • 26
    • 85025079164 scopus 로고    scopus 로고
    • Opportunities and challenges in modeling emerging infectious diseases
    • Metcalf CJE, Lessler J. 2017 Opportunities and challenges in modeling emerging infectious diseases. Science 357, 149-152. (doi:10.1126/ science.aam8335)
    • (2017) Science , vol.357 , pp. 149-152
    • Metcalf, C.J.E.1    Lessler, J.2
  • 27
    • 84964765481 scopus 로고    scopus 로고
    • Detecting presymptomatic infection is necessary to forecast major epidemics in the earliest stages of infectious disease outbreaks
    • Thompson RN, Gilligan CA, Cunniffe NJ. 2016 Detecting presymptomatic infection is necessary to forecast major epidemics in the earliest stages of infectious disease outbreaks. PLoS Comp. Biol. 12, e1004836. (doi:10.1371/journal.pcbi.1004836)
    • (2016) PLoS Comp. Biol. , vol.12
    • Thompson, R.N.1    Gilligan, C.A.2    Cunniffe, N.J.3
  • 29
    • 85017285989 scopus 로고    scopus 로고
    • Key data for outbreak evaluation: Building on the Ebola experience
    • Cori A et al. 2017 Key data for outbreak evaluation: building on the Ebola experience. Phil. Trans. R. Soc. B 372, 20160371. (doi:10.1098/rstb.2016.0371)
    • (2017) Phil. Trans. R. Soc. B , vol.372 , pp. 20160371
    • Cori, A.1
  • 30
    • 77956581464 scopus 로고    scopus 로고
    • Modelling the influence of human behaviour on the spread of infectious diseases: A review
    • Funk S, Salathé M, Jansen VA. 2010 Modelling the influence of human behaviour on the spread of infectious diseases: a review. J. R. Soc. Interface 7, 1247-1256. (doi:10.1098/rsif.2010.0142)
    • (2010) J. R. Soc. Interface , vol.7 , pp. 1247-1256
    • Funk, S.1    Salathé, M.2    Jansen, V.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.