-
1
-
-
0039253775
-
Eddies: Continuously adaptive query processing
-
May 2000
-
Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive Query Processing. SIGMOD Rec. 29, 2 (May 2000), 261–272. https://doi.org/10.1145/335191.335420
-
(2000)
SIGMOD Rec
, vol.29
, Issue.2
, pp. 261-272
-
-
Avnur, R.1
Hellerstein, J.M.2
-
3
-
-
84968903161
-
Flock: Hybrid crowd-machine learning classifiers
-
ACM, New York, NY, USA
-
Justin Cheng and Michael S. Bernstein. 2015. Flock: Hybrid Crowd-Machine Learning Classifiers. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (CSCW’15). ACM, New York, NY, USA, 600–611. https://doi.org/10.1145/2675133.2675214
-
(2015)
Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work & Social Computing (CSCW’15)
, pp. 600-611
-
-
Cheng, J.1
Bernstein, M.S.2
-
4
-
-
84880360544
-
Pomdp-based control of workflows for crowdsourcing
-
Sept. 2013
-
Peng Dai, Christopher H. Lin, Mausam, and Daniel S. Weld. 2013. POMDP-based Control of Workflows for Crowdsourcing. Artif. Intell. 202, 1 (Sept. 2013), 52–85. https://doi.org/10.1016/j.artint.2013.06.002
-
(2013)
Artif. Intell.
, vol.202
, Issue.1
, pp. 52-85
-
-
Dai, P.1
Lin, C.H.2
Mausam3
Weld, D.S.4
-
7
-
-
50249126090
-
Adaptive query processing
-
2007
-
Amol Deshpande, Zachary Ives, and Vijayshankar Raman. 2007. Adaptive Query Processing. Foundations and TrendsÂő in Databases 1, 1 (2007), 1–140. https://doi.org/10.1561/1900000001
-
(2007)
Foundations and TrendsÂő in Databases
, vol.1
, Issue.1
, pp. 1-140
-
-
Deshpande, A.1
Ives, Z.2
Raman, V.3
-
8
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and Randomization
-
2000
-
Thomas G Dietterich. 2000. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning 40, 2 (2000).
-
(2000)
Machine Learning
, vol.40
, pp. 2
-
-
Dietterich, T.G.1
-
9
-
-
84963741741
-
Data fusion: Resolving conflicts from multiple sources
-
Springer
-
Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. 2013. Data Fusion: Resolving Conflicts from Multiple Sources. In Procs of WAIM2013. Springer. https://doi.org/10.1007/978-3-642-36257-6
-
(2013)
Procs of WAIM2013
-
-
Dong, X.L.1
Berti-Equille, L.2
Srivastava, D.3
-
10
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
01 Mar 2004
-
Saso Džeroski and Bernard Ženko. 2004. Is Combining Classifiers with Stacking Better than Selecting the Best One? Machine Learning 54, 3 (01 Mar 2004), 255–273.
-
(2004)
Machine Learning
, vol.54
, Issue.3
, pp. 255-273
-
-
Džeroski, S.1
Zenko, B.2
-
11
-
-
84875647836
-
Increasing cheat robustness of crowdsourcing tasks
-
2013
-
Carsten Eickhoff and Arjen P de Vries. 2013. Increasing cheat robustness of crowdsourcing tasks. Information retrieval 16, 2 (2013), 121–137.
-
(2013)
Information Retrieval
, vol.16
, Issue.2
, pp. 121-137
-
-
Eickhoff, C.1
De Vries, A.P.2
-
14
-
-
0027621744
-
Predicate migration: Optimizing queries with expensive predicates
-
ACM
-
Joseph M. Hellerstein and Michael Stonebraker. 1993. Predicate Migration: Optimizing Queries with Expensive Predicates. In Proceedings of ACM SIGMOD. ACM.
-
(1993)
Proceedings of ACM SIGMOD
-
-
Hellerstein, J.M.1
Stonebraker, M.2
-
16
-
-
84892542420
-
Analyzing costs and accuracy of validation mechanisms for crowdsourcing platforms
-
2013
-
Matthias Hirth, Tobias Hoßfeld, and Phuoc Tran-Gia. 2013. Analyzing costs and accuracy of validation mechanisms for crowdsourcing platforms. Mathematical and Computer Modelling 57, 11 (2013), 2918–2932.
-
(2013)
Mathematical and Computer Modelling
, vol.57
, Issue.11
, pp. 2918-2932
-
-
Hirth, M.1
Hoßfeld, T.2
Tran-Gia, P.3
-
17
-
-
84899442104
-
Combining human and machine intelligence in large-scale crowdsourcing
-
International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC
-
Ece Kamar, Severin Hacker, and Eric Horvitz. 2012. Combining Human and Machine Intelligence in Large-scale Crowdsourcing. In Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’12). International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 467–474.
-
(2012)
Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems (AAMAS’12)
, pp. 467-474
-
-
Kamar, E.1
Hacker, S.2
Horvitz, E.3
-
18
-
-
84896061857
-
Lifelong learning for acquiring the wisdom of the crowd
-
Ece Kamar, Ashish Kapoor, and Eric Horvitz. 2013. Lifelong learning for acquiring the wisdom of the crowd. In JCAI.
-
(2013)
JCAI
-
-
Kamar, E.1
Kapoor, A.2
Horvitz, E.3
-
19
-
-
84856118112
-
Budget-optimal crowdsourcing using low-rank matrix approximations
-
IEEE
-
David R Karger, Sewoong Oh, and Devavrat Shah. 2011. Budget-optimal crowdsourcing using low-rank matrix approximations. In Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on. IEEE, 284–291.
-
(2011)
Communication, Control, and Computing (Allerton), 2011 49th Annual Allerton Conference on
, pp. 284-291
-
-
Karger, D.R.1
Oh, S.2
Shah, D.3
-
21
-
-
85066423332
-
Crowd-based multi-predicate screening of papers in literature reviews
-
ternational World Wide Web Conferences Steering Committee
-
Evgeny Krivosheev, Boualem Benatallah, and Fabio Casati. 2018. Crowd-based Multi-predicate Screening of Papers in Literature Reviews. In Proceedings of WWW2018. International World Wide Web Conferences Steering Committee.
-
(2018)
Proceedings of WWW2018
-
-
Krivosheev, E.1
Benatallah, B.2
Casati, F.3
-
23
-
-
85066416188
-
Dynamic filter: Adaptive query processing with the crowd
-
AAAI
-
Doren Lan, Katherine Reed, Austin Shin, and Beth Trushkowsky. 2017. Dynamic Filter: Adaptive Query Processing with the Crowd. In Procs of Hcomp2017. AAAI.
-
(2017)
Procs of Hcomp2017
-
-
Lan, D.1
Reed, K.2
Shin, A.3
Trushkowsky, B.4
-
24
-
-
84906771152
-
Error rate analysis of labeling by crowdsourcing
-
Hongwei Li, Bin Yu, and Dengyong Zhou. 2013. Error Rate Analysis of Labeling by Crowdsourcing. In Procs of ICML2013.
-
(2013)
Procs of ICML2013
-
-
Li, H.1
Yu, B.2
Zhou, D.3
-
25
-
-
84867130103
-
Truelabel + confusions: A spectrum of probabilistic models in analyzing multiple ratings
-
Chao Liu and Yi Min Wang. 2012. TrueLabel + Confusions: A Spectrum of Probabilistic Models in Analyzing Multiple Ratings. In Procs of ICML2012. ICML.
-
(2012)
Procs of ICML2012. ICML.
-
-
Liu, C.1
Wang, Y.M.2
-
28
-
-
85066419407
-
Probabilistic modeling for crowdsourcing partially-subjective ratings
-
AAAI Publications
-
An Thanh Nguyen, Matthew Halpern, Byron C. Wallace, and Matthew Lease. 2015. Probabilistic Modeling for Crowdsourcing Partially-Subjective Ratings. In Procs of HComp2015. AAAI Publications.
-
(2015)
Procs of HComp2015
-
-
Nguyen, A.T.1
Halpern, M.2
Wallace, B.C.3
Lease, M.4
-
30
-
-
85032712776
-
Crowd access path optimization: Diversity matters
-
Besmira Nushi, Adish Singla, Anja Gruenheid, Erfan Zamanian, Andreas Krause, and Donald Kossmann. 2015. Crowd Access Path Optimization: Diversity Matters. In HCOMP.
-
(2015)
HCOMP
-
-
Nushi, B.1
Singla, A.2
Gruenheid, A.3
Zamanian, E.4
Krause, A.5
Kossmann, D.6
-
31
-
-
84998610657
-
Optimality of belief propagation for crowdsourced classification
-
Jungseul Ok, Sewoong Oh, Jinwoo Shin, and Yung Yi. 2016. Optimality of Belief Propagation for Crowdsourced Classification. In Procs of ICML2016.
-
(2016)
Procs of ICML2016
-
-
Ok, J.1
Oh, S.2
Shin, J.3
Yi, Y.4
-
32
-
-
84901773447
-
Optimal crowd-powered rating and filtering algorithms
-
Aditya Parameswaran, Stephen Boyd, Hector Garcia-Molina, Ashish Gupta, Neoklis Polyzotis, and Jennifer Widom. 2014. Optimal crowd-powered rating and filtering algorithms. In Proceedings of VLDB. VLDB Endowment.
-
(2014)
Proceedings of VLDB. VLDB Endowment
-
-
Parameswaran, A.1
Boyd, S.2
Garcia-Molina, H.3
Gupta, A.4
Polyzotis, N.5
Widom, J.6
-
33
-
-
84862645517
-
Crowdscreen: Algorithms for filtering data with humans
-
ACM
-
Aditya Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis Polyzotis, Aditya Ramesh, and Jennifer Widom. 2012. CrowdScreen: Algorithms for Filtering Data with Humans. In Proceedings of ACM SIGMOD. ACM.
-
(2012)
Proceedings of ACM SIGMOD
-
-
Parameswaran, A.1
Garcia-Molina, H.2
Park, H.3
Polyzotis, N.4
Ramesh, A.5
Widom, J.6
-
34
-
-
84891073325
-
Query optimization over crowdsourced data
-
Aug. 2013
-
Hyunjung Park and Jennifer Widom. 2013. Query Optimization over Crowdsourced Data. Proc. VLDB Endow. 6, 10 (Aug. 2013), 781–792. https://doi.org/10.14778/2536206.2536207
-
(2013)
Proc. VLDB Endow.
, vol.6
, Issue.10
, pp. 781-792
-
-
Park, H.1
Widom, J.2
-
35
-
-
84906724121
-
Crowd-based mining of reusable process model patterns
-
Shazia Sadiq, Pnina Soffer, and Hagen Völzer (Eds.). Springer International Publishing
-
Carlos Rodriguez, Florian Daniel, and Fabio Casati. 2014. Crowd-Based Mining of Reusable Process Model Patterns. In Business Process Management, Shazia Sadiq, Pnina Soffer, and Hagen Völzer (Eds.). Springer International Publishing, 51–66.
-
(2014)
Business Process Management
, pp. 51-66
-
-
Rodriguez, C.1
Daniel, F.2
Casati, F.3
-
36
-
-
75149176174
-
Ensemble-based classifiers
-
Feb. 2010
-
Lior Rokach. 2010. Ensemble-based Classifiers. Artif. Intell. Rev. 33, 1-2 (Feb. 2010), 1–39. https://doi.org/10.1007/ s10462-009-9124-7
-
(2010)
Artif. Intell. Rev.
, vol.33
, Issue.1-2
, pp. 1-39
-
-
Rokach, L.1
-
37
-
-
85153964878
-
Inferring ground truth from subjective labelling of venus images
-
1995
-
Padhraic Smyth, Usama Fayyad, Michael Burl, Pietro Perona, and Pierre Baldi. 1995. Inferring ground truth from subjective labelling of venus images. Advances in neural information processing systems 7 (1995), 1085–1092.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 1085-1092
-
-
Smyth, P.1
Fayyad, U.2
Burl, M.3
Perona, P.4
Baldi, P.5
-
38
-
-
85066416340
-
Crowdsourcing information extraction for biomedical systematic reviews
-
Yalin Sun, Pengxiang Cheng, Shengwei Wang, Hao Lyu, Matthew Lease, Iain Marshall, and Byron C. Wallace. 2016. Crowdsourcing Information Extraction for Biomedical Systematic Reviews. In 4th AAAI Conference on Human Computation and Crowdsourcing (HCOMP): Works-in-Progress Track. http://arxiv.org/abs/1609.01017 3 pages. arXiv:1609.01017.
-
(2016)
4th AAAI Conference on Human Computation and Crowdsourcing (HCOMP): Works-in-Progress Track
-
-
Sun, Y.1
Cheng, P.2
Wang, S.3
Lyu, H.4
Lease, M.5
Marshall, I.6
Wallace, B.C.7
-
39
-
-
85066416847
-
Making better use of the crowd: How crowdsourcing can advance machine learning research
-
Jennifer Wortman Vaughan. 2017. Making Better Use of the Crowd: How Crowdsourcing Can Advance Machine Learning Research. Survey and Position Paper. Microsoft Research. Available at http://www.jennwv.com/projects/crowdtutorial.html.
-
(2017)
Survey and Position Paper. Microsoft Research
-
-
Vaughan, J.W.1
-
41
-
-
85066419682
-
Crowdsourced clustering: Querying edges vs triangles
-
Ramya Korlakai Vinayak and Babak Hassibi. 2016. Crowdsourced clustering: Querying edges vs triangles. In Procs of Nips 2016.
-
(2016)
Procs of Nips 2016
-
-
Vinayak, R.K.1
Hassibi, B.2
-
42
-
-
85028670339
-
Identifying reports of randomized controlled trials (rcts) via a hybrid machine learning and crowdsourcing approach
-
2017
-
Byron C Wallace, A Noel-Storr, IJ Marshall, AM Cohen, NR Smalheiser, and J Thomas. 2017. Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach. J Am Med Inform Assoc (2017).
-
(2017)
J Am Med Inform Assoc
-
-
Wallace, B.C.1
Noel-Storr, A.2
Marshall, I.J.3
Cohen, A.M.4
Smalheiser, N.R.5
Thomas, J.6
-
44
-
-
77951951247
-
-
2009
-
Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R Movellan, and Paul L Ruvolo. 2009. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. (2009), 2035–2043.
-
(2009)
Whose Vote Should Count More: Optimal Integration of Labels from Labelers of Unknown Expertise
, pp. 2035-2043
-
-
Whitehill, J.1
Wu, T.-F.2
Bergsma, J.3
Movellan, J.R.4
Ruvolo, P.L.5
|