메뉴 건너뛰기




Volumn 2, Issue CSCW, 2018, Pages

Combining crowd and machines for multi-predicate item screening

Author keywords

[No Author keywords available]

Indexed keywords

BUDGET CONTROL; COST ESTIMATING; ECONOMIC AND SOCIAL EFFECTS;

EID: 85064888586     PISSN: None     EISSN: 25730142     Source Type: Journal    
DOI: 10.1145/3274366     Document Type: Article
Times cited : (20)

References (45)
  • 1
    • 0039253775 scopus 로고    scopus 로고
    • Eddies: Continuously adaptive query processing
    • May 2000
    • Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive Query Processing. SIGMOD Rec. 29, 2 (May 2000), 261–272. https://doi.org/10.1145/335191.335420
    • (2000) SIGMOD Rec , vol.29 , Issue.2 , pp. 261-272
    • Avnur, R.1    Hellerstein, J.M.2
  • 4
    • 84880360544 scopus 로고    scopus 로고
    • Pomdp-based control of workflows for crowdsourcing
    • Sept. 2013
    • Peng Dai, Christopher H. Lin, Mausam, and Daniel S. Weld. 2013. POMDP-based Control of Workflows for Crowdsourcing. Artif. Intell. 202, 1 (Sept. 2013), 52–85. https://doi.org/10.1016/j.artint.2013.06.002
    • (2013) Artif. Intell. , vol.202 , Issue.1 , pp. 52-85
    • Dai, P.1    Lin, C.H.2    Mausam3    Weld, D.S.4
  • 8
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and Randomization
    • 2000
    • Thomas G Dietterich. 2000. An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning 40, 2 (2000).
    • (2000) Machine Learning , vol.40 , pp. 2
    • Dietterich, T.G.1
  • 9
    • 84963741741 scopus 로고    scopus 로고
    • Data fusion: Resolving conflicts from multiple sources
    • Springer
    • Xin Luna Dong, Laure Berti-Equille, and Divesh Srivastava. 2013. Data Fusion: Resolving Conflicts from Multiple Sources. In Procs of WAIM2013. Springer. https://doi.org/10.1007/978-3-642-36257-6
    • (2013) Procs of WAIM2013
    • Dong, X.L.1    Berti-Equille, L.2    Srivastava, D.3
  • 10
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • 01 Mar 2004
    • Saso Džeroski and Bernard Ženko. 2004. Is Combining Classifiers with Stacking Better than Selecting the Best One? Machine Learning 54, 3 (01 Mar 2004), 255–273.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 255-273
    • Džeroski, S.1    Zenko, B.2
  • 11
    • 84875647836 scopus 로고    scopus 로고
    • Increasing cheat robustness of crowdsourcing tasks
    • 2013
    • Carsten Eickhoff and Arjen P de Vries. 2013. Increasing cheat robustness of crowdsourcing tasks. Information retrieval 16, 2 (2013), 121–137.
    • (2013) Information Retrieval , vol.16 , Issue.2 , pp. 121-137
    • Eickhoff, C.1    De Vries, A.P.2
  • 14
    • 0027621744 scopus 로고
    • Predicate migration: Optimizing queries with expensive predicates
    • ACM
    • Joseph M. Hellerstein and Michael Stonebraker. 1993. Predicate Migration: Optimizing Queries with Expensive Predicates. In Proceedings of ACM SIGMOD. ACM.
    • (1993) Proceedings of ACM SIGMOD
    • Hellerstein, J.M.1    Stonebraker, M.2
  • 16
    • 84892542420 scopus 로고    scopus 로고
    • Analyzing costs and accuracy of validation mechanisms for crowdsourcing platforms
    • 2013
    • Matthias Hirth, Tobias Hoßfeld, and Phuoc Tran-Gia. 2013. Analyzing costs and accuracy of validation mechanisms for crowdsourcing platforms. Mathematical and Computer Modelling 57, 11 (2013), 2918–2932.
    • (2013) Mathematical and Computer Modelling , vol.57 , Issue.11 , pp. 2918-2932
    • Hirth, M.1    Hoßfeld, T.2    Tran-Gia, P.3
  • 18
    • 84896061857 scopus 로고    scopus 로고
    • Lifelong learning for acquiring the wisdom of the crowd
    • Ece Kamar, Ashish Kapoor, and Eric Horvitz. 2013. Lifelong learning for acquiring the wisdom of the crowd. In JCAI.
    • (2013) JCAI
    • Kamar, E.1    Kapoor, A.2    Horvitz, E.3
  • 21
    • 85066423332 scopus 로고    scopus 로고
    • Crowd-based multi-predicate screening of papers in literature reviews
    • ternational World Wide Web Conferences Steering Committee
    • Evgeny Krivosheev, Boualem Benatallah, and Fabio Casati. 2018. Crowd-based Multi-predicate Screening of Papers in Literature Reviews. In Proceedings of WWW2018. International World Wide Web Conferences Steering Committee.
    • (2018) Proceedings of WWW2018
    • Krivosheev, E.1    Benatallah, B.2    Casati, F.3
  • 23
    • 85066416188 scopus 로고    scopus 로고
    • Dynamic filter: Adaptive query processing with the crowd
    • AAAI
    • Doren Lan, Katherine Reed, Austin Shin, and Beth Trushkowsky. 2017. Dynamic Filter: Adaptive Query Processing with the Crowd. In Procs of Hcomp2017. AAAI.
    • (2017) Procs of Hcomp2017
    • Lan, D.1    Reed, K.2    Shin, A.3    Trushkowsky, B.4
  • 24
    • 84906771152 scopus 로고    scopus 로고
    • Error rate analysis of labeling by crowdsourcing
    • Hongwei Li, Bin Yu, and Dengyong Zhou. 2013. Error Rate Analysis of Labeling by Crowdsourcing. In Procs of ICML2013.
    • (2013) Procs of ICML2013
    • Li, H.1    Yu, B.2    Zhou, D.3
  • 25
    • 84867130103 scopus 로고    scopus 로고
    • Truelabel + confusions: A spectrum of probabilistic models in analyzing multiple ratings
    • Chao Liu and Yi Min Wang. 2012. TrueLabel + Confusions: A Spectrum of Probabilistic Models in Analyzing Multiple Ratings. In Procs of ICML2012. ICML.
    • (2012) Procs of ICML2012. ICML.
    • Liu, C.1    Wang, Y.M.2
  • 28
    • 85066419407 scopus 로고    scopus 로고
    • Probabilistic modeling for crowdsourcing partially-subjective ratings
    • AAAI Publications
    • An Thanh Nguyen, Matthew Halpern, Byron C. Wallace, and Matthew Lease. 2015. Probabilistic Modeling for Crowdsourcing Partially-Subjective Ratings. In Procs of HComp2015. AAAI Publications.
    • (2015) Procs of HComp2015
    • Nguyen, A.T.1    Halpern, M.2    Wallace, B.C.3    Lease, M.4
  • 31
    • 84998610657 scopus 로고    scopus 로고
    • Optimality of belief propagation for crowdsourced classification
    • Jungseul Ok, Sewoong Oh, Jinwoo Shin, and Yung Yi. 2016. Optimality of Belief Propagation for Crowdsourced Classification. In Procs of ICML2016.
    • (2016) Procs of ICML2016
    • Ok, J.1    Oh, S.2    Shin, J.3    Yi, Y.4
  • 34
    • 84891073325 scopus 로고    scopus 로고
    • Query optimization over crowdsourced data
    • Aug. 2013
    • Hyunjung Park and Jennifer Widom. 2013. Query Optimization over Crowdsourced Data. Proc. VLDB Endow. 6, 10 (Aug. 2013), 781–792. https://doi.org/10.14778/2536206.2536207
    • (2013) Proc. VLDB Endow. , vol.6 , Issue.10 , pp. 781-792
    • Park, H.1    Widom, J.2
  • 35
    • 84906724121 scopus 로고    scopus 로고
    • Crowd-based mining of reusable process model patterns
    • Shazia Sadiq, Pnina Soffer, and Hagen Völzer (Eds.). Springer International Publishing
    • Carlos Rodriguez, Florian Daniel, and Fabio Casati. 2014. Crowd-Based Mining of Reusable Process Model Patterns. In Business Process Management, Shazia Sadiq, Pnina Soffer, and Hagen Völzer (Eds.). Springer International Publishing, 51–66.
    • (2014) Business Process Management , pp. 51-66
    • Rodriguez, C.1    Daniel, F.2    Casati, F.3
  • 36
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Feb. 2010
    • Lior Rokach. 2010. Ensemble-based Classifiers. Artif. Intell. Rev. 33, 1-2 (Feb. 2010), 1–39. https://doi.org/10.1007/ s10462-009-9124-7
    • (2010) Artif. Intell. Rev. , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 39
    • 85066416847 scopus 로고    scopus 로고
    • Making better use of the crowd: How crowdsourcing can advance machine learning research
    • Jennifer Wortman Vaughan. 2017. Making Better Use of the Crowd: How Crowdsourcing Can Advance Machine Learning Research. Survey and Position Paper. Microsoft Research. Available at http://www.jennwv.com/projects/crowdtutorial.html.
    • (2017) Survey and Position Paper. Microsoft Research
    • Vaughan, J.W.1
  • 41
    • 85066419682 scopus 로고    scopus 로고
    • Crowdsourced clustering: Querying edges vs triangles
    • Ramya Korlakai Vinayak and Babak Hassibi. 2016. Crowdsourced clustering: Querying edges vs triangles. In Procs of Nips 2016.
    • (2016) Procs of Nips 2016
    • Vinayak, R.K.1    Hassibi, B.2
  • 45


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.