메뉴 건너뛰기




Volumn 2, Issue , 2016, Pages 803-818

Optimality of Belief Propagation for crowdsourced classification

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; INFERENCE ENGINES; INFORMATION THEORY; LEARNING SYSTEMS;

EID: 84998610657     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (17)

References (30)
  • 2
    • 84960425512 scopus 로고    scopus 로고
    • Nonbacktracking spectrum of random graphs: Community detection and non-regular ramanujan graphs
    • Bordenave, C, Lelarge, M., and Massoulié, L. Nonbacktracking spectrum of random graphs: community detection and non-regular ramanujan graphs. In Proceedings of IEEE FOCS, 2015.
    • (2015) Proceedings of IEEE FOCS
    • Bordenave, C.1    Lelarge, M.2    Massoulié, L.3
  • 7
    • 79959638956 scopus 로고    scopus 로고
    • Who moderates the moderators?: Crowdsourcing abuse detection in usergenerated content
    • Ghosh, A., Kale, S., and McAfee, P. Who moderates the moderators?: Crowdsourcing abuse detection in usergenerated content. In Proceedings of ACM EC, 2011.
    • (2011) Proceedings of ACM EC
    • Ghosh, A.1    Kale, S.2    McAfee, P.3
  • 10
    • 85162483531 scopus 로고    scopus 로고
    • Iterative learning for reliable crowdsourcing systems
    • Karger, D. R., Oh, S., and Shah, D. Iterative learning for reliable crowdsourcing systems. In Proceedings of NIPS, 2011.
    • (2011) Proceedings of NIPS
    • Karger, D.R.1    Oh, S.2    Shah, D.3
  • 12
    • 84896842331 scopus 로고    scopus 로고
    • Budget-optimal task allocation for reliable crowdsourcing systems
    • Karger, D. R., Oh, S., and Shah, D. Budget-optimal task allocation for reliable crowdsourcing systems. Operations Research, 62(1):1-24, 2014.
    • (2014) Operations Research , vol.62 , Issue.1 , pp. 1-24
    • Karger, D.R.1    Oh, S.2    Shah, D.3
  • 13
    • 84889590124 scopus 로고    scopus 로고
    • Spatially coupled ensembles universally achieve capacity under belief propagation
    • Kudekar, Shrinivas, Richardson, Tom, and Urbanke, Rudiger L. Spatially coupled ensembles universally achieve capacity under belief propagation. IEEE Transactions on Information Theory, 59(12):7761-7813, 2013.
    • (2013) IEEE Transactions on Information Theory , vol.59 , Issue.12 , pp. 7761-7813
    • Kudekar, S.1    Richardson, T.2    Urbanke, R.L.3
  • 15
    • 84906771152 scopus 로고    scopus 로고
    • Error rate analysis of labeling by crowdsourcing
    • Li, H., Yu, B., and Zhou, D. Error rate analysis of labeling by crowdsourcing. In Proceedings of ICML, 2013.
    • (2013) Proceedings of ICML
    • Li, H.1    Yu, B.2    Zhou, D.3
  • 18
    • 84904282159 scopus 로고    scopus 로고
    • Belief propagation, robust reconstruction and optimal recovery of block models
    • Mossel, E., Neeman, J., and Sly, A. Belief propagation, robust reconstruction and optimal recovery of block models. In Proceedings of COLT, 2014.
    • (2014) Proceedings of COLT
    • Mossel, E.1    Neeman, J.2    Sly, A.3
  • 19
    • 84983109391 scopus 로고    scopus 로고
    • Max-product belief propagation for linear programming: Applications to combinatorial optimization
    • Park, S. and Shin, J. Max-product belief propagation for linear programming: applications to combinatorial optimization. In Proceedings of UAI, 2015.
    • (2015) Proceedings of UAI
    • Park, S.1    Shin, J.2
  • 20
    • 0020276268 scopus 로고
    • Reverend bayes on inference engines: A distributed hierarchical approach
    • Pearl, J. Reverend bayes on inference engines: A distributed hierarchical approach. In Proceedings of AAAI, 1982.
    • (1982) Proceedings of AAAI
    • Pearl, J.1
  • 23
    • 65449144451 scopus 로고    scopus 로고
    • Get another label? Improving data quality and data mining using multiple, noisy labelers
    • Sheng, V. S., Provost, F, and Ipeirotis, P. G. Get another label? improving data quality and data mining using multiple, noisy labelers. In Proceedings of ACM SIGKDD, 2008.
    • (2008) Proceedings of ACM SIGKDD
    • Sheng, V.S.1    Provost, F.2    Ipeirotis, P.G.3
  • 25
    • 80053360508 scopus 로고    scopus 로고
    • Cheap and fast-but is it good?: Evaluating non-expert annotations for natural language tasks
    • Association for Computational Linguistics
    • Snow, R., O'Connor, B., Jurafsky, D., and Ng, A. Y. Cheap and fast-but is it good?: evaluating non-expert annotations for natural language tasks. In Proceedings of EMNLP. Association for Computational Linguistics, 2008.
    • (2008) Proceedings of EMNLP
    • Snow, R.1    O'Connor, B.2    Jurafsky, D.3    Ng, A.Y.4
  • 27
    • 77951951247 scopus 로고    scopus 로고
    • Whose vote should count more: Optimal integration of labels from labelers of unknown expertise
    • Whitehill, J., Ruvolo, P., Wu, T., Bergsma, J., and Movellan, J. Whose vote should count more: Optimal integration of labels from labelers of unknown expertise. In Proceedings of NIPS, 2009.
    • (2009) Proceedings of NIPS
    • Whitehill, J.1    Ruvolo, P.2    Wu, T.3    Bergsma, J.4    Movellan, J.5
  • 28
    • 84937883035 scopus 로고    scopus 로고
    • Spectral methods meet em: A provably optimal algorithm for crowdsourcing
    • Zhang, Y., Chen, X., Zhou, D., and Jordan, M. I. Spectral methods meet em: A provably optimal algorithm for crowdsourcing. In Proceedings of NIPS, 2014.
    • (2014) Proceedings of NIPS
    • Zhang, Y.1    Chen, X.2    Zhou, D.3    Jordan, M.I.4
  • 29


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.