메뉴 건너뛰기




Volumn 24, Issue 6, 2017, Pages 1165-1168

Identifying reports of randomized controlled trials (RCTs) via a hybrid machine learning and crowdsourcing approach

Author keywords

Crowdsourcing; Evidence based medicine; Human computation; Machine learning; Natural language processing

Indexed keywords

CLASSIFIER; CONTROLLED STUDY; CROWDSOURCING; HUMAN; MEDICINE; NATURAL LANGUAGE PROCESSING; RANDOMIZED CONTROLLED TRIAL; RECALL; BIBLIOGRAPHIC DATABASE; INFORMATION RETRIEVAL; LITERATURE; MACHINE LEARNING; MEDICAL RESEARCH; PROCEDURES; RANDOMIZED CONTROLLED TRIAL (TOPIC); RECEIVER OPERATING CHARACTERISTIC; SUPPORT VECTOR MACHINE;

EID: 85028670339     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocx053     Document Type: Article
Times cited : (132)

References (10)
  • 1
    • 0027849686 scopus 로고
    • The Cochrane collaboration: preparing, maintaining, and disseminating systematic reviews of the effects of health care
    • Chalmers I. The Cochrane collaboration: preparing, maintaining, and disseminating systematic reviews of the effects of health care. Ann NY Acad Sci. 1993;703(1):156-65.
    • (1993) Ann NY Acad Sci. , vol.703 , Issue.1 , pp. 156-165
    • Chalmers, I.1
  • 2
    • 84940368805 scopus 로고    scopus 로고
    • Automated confidence ranked classification of randomized controlled trial articles: an aid to evidence-based medicine
    • Cohen AM, Smalheiser NR, McDonagh MS, et al. Automated confidence ranked classification of randomized controlled trial articles: an aid to evidence-based medicine. J Am Med Inform Assoc. 2015;22(3):707-17.
    • (2015) J Am Med Inform Assoc. , vol.22 , Issue.3 , pp. 707-717
    • Cohen, A.M.1    Smalheiser, N.R.2    McDonagh, M.S.3
  • 3
    • 69449097743 scopus 로고    scopus 로고
    • Retrieving randomized controlled trials from Medline: a comparison of 38 published search filters
    • McKibbon KA, Wilczynskil NL, Haynes RB. Retrieving randomized controlled trials from Medline: a comparison of 38 published search filters. Health Info Libr J. 2009;26(3):187-202.
    • (2009) Health Info Libr J. , vol.26 , Issue.3 , pp. 187-202
    • McKibbon, K.A.1    Wilczynskil, N.L.2    Haynes, R.B.3
  • 4
    • 84857136986 scopus 로고    scopus 로고
    • Understanding why evidence from randomised clinical trials may not be retrieved from Medline: comparison of indexed and non-indexed records
    • Wieland LS, Robinson KA, Dickersin K. Understanding why evidence from randomised clinical trials may not be retrieved from Medline: comparison of indexed and non-indexed records. Brit Med J. 2012;344:2008-12.
    • (2012) Brit Med J. , vol.344 , pp. 2008-2012
    • Wieland, L.S.1    Robinson, K.A.2    Dickersin, K.3
  • 5
    • 77957859521 scopus 로고    scopus 로고
    • Seventy-five trials and eleven systematic reviews a day: how will we ever keep up?
    • Bastian H, Glaszio P, Chalmers I. Seventy-five trials and eleven systematic reviews a day: how will we ever keep up? PLoS Med. 2010;7(9):1-6.
    • (2010) PLoS Med. , vol.7 , Issue.9 , pp. 1-6
    • Bastian, H.1    Glaszio, P.2    Chalmers, I.3
  • 7
    • 33644696493 scopus 로고    scopus 로고
    • Reducing workload in systematic review preparation using automated citation classification
    • Cohen AM, Hersh WR, Peterson K, Yen P-Y. Reducing workload in systematic review preparation using automated citation classification. J Am Med Inform Assoc. 2006;13(2):206-19.
    • (2006) J Am Med Inform Assoc. , vol.13 , Issue.2 , pp. 206-219
    • Cohen, A.M.1    Hersh, W.R.2    Peterson, K.3    Yen, P-Y.4
  • 8
    • 0000636553 scopus 로고    scopus 로고
    • Text categorization with support vector machines: learning with many relevant features
    • Berlin: Springer;
    • Joachims T. Text categorization with support vector machines: learning with many relevant features. In European Conference on Machine Learning (ECML). Berlin: Springer; 1998.
    • (1998) In European Conference on Machine Learning (ECML)
    • Joachims, T.1
  • 9
    • 84874086932 scopus 로고    scopus 로고
    • Who should label what? Instance allocation in multiple expert active learning
    • Phoenix, AZ: Society for Industrial and Applied Mathematics;
    • Wallace BC, Small K, Brodley CE, Trikalinos TA. Who should label what? Instance allocation in multiple expert active learning. In SIAM International Conference on Data Mining. Phoenix, AZ: Society for Industrial and Applied Mathematics; 2011.
    • (2011) In SIAM International Conference on Data Mining
    • Wallace, B.C.1    Small, K.2    Brodley, C.E.3    Trikalinos, T.A.4
  • 10
    • 85134819655 scopus 로고    scopus 로고
    • Combining crowd and expert labels using decision theoretic active learning
    • San Diego, CA: Association for the Advancement of Artificial Intelligence (AAAI);
    • Nguyen AT, Wallace BC, Lease M. Combining crowd and expert labels using decision theoretic active learning. In Human Computation and Crowdsourcing (HCOMP). San Diego, CA: Association for the Advancement of Artificial Intelligence (AAAI); 2015.
    • (2015) In Human Computation and Crowdsourcing (HCOMP)
    • Nguyen, A.T.1    Wallace, B.C.2    Lease, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.