메뉴 건너뛰기




Volumn 11, Issue 5, 2019, Pages

Optimal segmentation scale parameter, feature subset and classification algorithm for geographic object-based crop recognition using multisource satellite imagery

Author keywords

Crop recognition; Feature selection; GEOBIA; IEnRFE; Multisource satellite data; Optimal segmentation scale parameter

Indexed keywords

CROPS; DATA MINING; DECISION TREES; FEATURE EXTRACTION; IMAGE CLASSIFICATION; IMAGE SEGMENTATION; PARAMETER ESTIMATION; REMOTE SENSING; SATELLITE IMAGERY; SUPPORT VECTOR MACHINES;

EID: 85062976622     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs11050514     Document Type: Article
Times cited : (52)

References (81)
  • 3
    • 85019387338 scopus 로고    scopus 로고
    • Mapping Rice Fields in Urban Shanghai, Southeast China, Using Sentinel-1A and Landsat 8 Datasets
    • Mansaray, L.; Huang,W.; Zhang, D.; Huang, J.; Li, J. Mapping Rice Fields in Urban Shanghai, Southeast China, Using Sentinel-1A and Landsat 8 Datasets. Remote Sens. 2017, 9, 257.
    • (2017) Remote Sens. , vol.9 , pp. 257
    • Mansaray, L.1    Huang, W.2    Zhang, D.3    Huang, J.4    Li, J.5
  • 4
    • 85028611407 scopus 로고    scopus 로고
    • High-Resolution Vegetation Mapping in Japan by Combining Sentinel-2 and Landsat 8 Based Multi-Temporal Datasets through Machine Learning and Cross-Validation Approach
    • Sharma, R.C.; Hara, K.; Tateishi, R. High-Resolution Vegetation Mapping in Japan by Combining Sentinel-2 and Landsat 8 Based Multi-Temporal Datasets through Machine Learning and Cross-Validation Approach. Land 2017, 6, 50.
    • (2017) Land , vol.6 , pp. 50
    • Sharma, R.C.1    Hara, K.2    Tateishi, R.3
  • 6
    • 84998673750 scopus 로고    scopus 로고
    • Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almeria (Spain)
    • Novelli, A.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Tarantino, E. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almeria (Spain). Int. J. Appl. Earth Obs. 2016, 52, 403-411.
    • (2016) Int. J. Appl. Earth Obs. , vol.52 , pp. 403-411
    • Novelli, A.1    Aguilar, M.A.2    Nemmaoui, A.3    Aguilar, F.J.4    Tarantino, E.5
  • 7
    • 66049089993 scopus 로고    scopus 로고
    • Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study
    • Zhou,W.Q.; Huang, G.L.; Troy, A.; Cadenasso, M.L. Object-based land cover classification of shaded areas in high spatial resolution imagery of urban areas: A comparison study. Remote Sens. Environ. 2009, 113, 1769-1777.
    • (2009) Remote Sens. Environ. , vol.113 , pp. 1769-1777
    • Zhou, W.Q.1    Huang, G.L.2    Troy, A.3    Cadenasso, M.L.4
  • 8
    • 85019577649 scopus 로고    scopus 로고
    • Wetland classification in Newfoundland and Labrador using multi-source SAR and optical data integration
    • Amani, M.; Salehi, B.; Mahdavi, S.; Granger, J.; Brisco, B. Wetland classification in Newfoundland and Labrador using multi-source SAR and optical data integration. GISci. Remote Sens. 2017, 54, 779-796.
    • (2017) GISci. Remote Sens. , vol.54 , pp. 779-796
    • Amani, M.1    Salehi, B.2    Mahdavi, S.3    Granger, J.4    Brisco, B.5
  • 11
    • 33750482956 scopus 로고    scopus 로고
    • Automated classification of landform elements using object-based image analysis
    • Dragut, L.; Blaschke, T. Automated classification of landform elements using object-based image analysis. Geomorphology 2006, 81, 330-344.
    • (2006) Geomorphology , vol.81 , pp. 330-344
    • Dragut, L.1    Blaschke, T.2
  • 12
    • 10844220846 scopus 로고    scopus 로고
    • Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery
    • Wang, L.; Sousa, W.P.; Gong, P. Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery. Int. J. Remote Sens. 2004, 25, 5655-5668.
    • (2004) Int. J. Remote Sens. , vol.25 , pp. 5655-5668
    • Wang, L.1    Sousa, W.P.2    Gong, P.3
  • 13
    • 37549060718 scopus 로고    scopus 로고
    • Object-Based Classification as an Alternative Approach to the Traditional Pixel-Based Classification to Identify Potential Habitat of the Grasshopper Sparrow
    • Jobin, B.; Labrecque, S.; Grenier, M.; Falardeau, G. Object-Based Classification as an Alternative Approach to the Traditional Pixel-Based Classification to Identify Potential Habitat of the Grasshopper Sparrow. Environ. Manag. 2008, 41, 20-31.
    • (2008) Environ. Manag. , vol.41 , pp. 20-31
    • Jobin, B.1    Labrecque, S.2    Grenier, M.3    Falardeau, G.4
  • 14
    • 84875528367 scopus 로고    scopus 로고
    • A multispectral image segmentation approach for object-based image classification of high resolution satellite imagery
    • Byun, Y.G. A multispectral image segmentation approach for object-based image classification of high resolution satellite imagery. KSCE J. Civ. Eng. 2013, 17, 486-497.
    • (2013) KSCE J. Civ. Eng. , vol.17 , pp. 486-497
    • Byun, Y.G.1
  • 15
    • 34548435161 scopus 로고    scopus 로고
    • Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium
    • Coillie, F.M.B.V.; Verbeke, L.P.C.; Wulf, R.R.D. Feature selection by genetic algorithms in object-based classification of IKONOS imagery for forest mapping in Flanders, Belgium. Remote Sens. Environ. 2007, 110, 476-487.
    • (2007) Remote Sens. Environ. , vol.110 , pp. 476-487
    • Coillie, F.M.B.V.1    Verbeke, L.P.C.2    Wulf, R.R.D.3
  • 16
    • 85029388463 scopus 로고    scopus 로고
    • Feature Selection Solution with High Dimensionality and Low-Sample Size for Land Cover Classification in Object-Based Image Analysis
    • Huang, Y.; Zhao, C.; Yang, H.; Song, X.; Chen, J.; Li, Z. Feature Selection Solution with High Dimensionality and Low-Sample Size for Land Cover Classification in Object-Based Image Analysis. Remote Sens. 2017, 9, 939.
    • (2017) Remote Sens. , vol.9 , pp. 939
    • Huang, Y.1    Zhao, C.2    Yang, H.3    Song, X.4    Chen, J.5    Li, Z.6
  • 17
    • 84942590106 scopus 로고    scopus 로고
    • Object-based classification with rotation forest ensemble learning algorithm using very-high-resolution WorldView-2 image
    • Kavzoglu, T.; Colkesen, I.; Yomralioglu, T. Object-based classification with rotation forest ensemble learning algorithm using very-high-resolution WorldView-2 image. Remote Sens. Lett. 2015, 6, 834-843.
    • (2015) Remote Sens. Lett. , vol.6 , pp. 834-843
    • Kavzoglu, T.1    Colkesen, I.2    Yomralioglu, T.3
  • 18
    • 84937837804 scopus 로고    scopus 로고
    • Optimal Combination of Classification Algorithms and Feature Ranking Methods for Object-Based Classification of Submeter Resolution Z/I-Imaging DMC Imagery
    • Cánovasgarcía, F.; Alonsosarría, F. Optimal Combination of Classification Algorithms and Feature Ranking Methods for Object-Based Classification of Submeter Resolution Z/I-Imaging DMC Imagery. Remote Sens. 2015, 7, 4651-4677.
    • (2015) Remote Sens. , vol.7 , pp. 4651-4677
    • Cánovasgarcía, F.1    Alonsosarría, F.2
  • 19
    • 84892925466 scopus 로고    scopus 로고
    • Multi-scale segmentation approach for object-based land-cover classification using high-resolution imagery
    • Zhang, L.; Jia, K.; Li, X.; Yuan, Q.; Zhao, X. Multi-scale segmentation approach for object-based land-cover classification using high-resolution imagery. Remote Sens. Lett. 2014, 5, 73-82.
    • (2014) Remote Sens. Lett. , vol.5 , pp. 73-82
    • Zhang, L.1    Jia, K.2    Li, X.3    Yuan, Q.4    Zhao, X.5
  • 20
    • 79955383550 scopus 로고    scopus 로고
    • Assessing object-based classification: Advantages and limitations
    • Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2009, 1, 187-194.
    • (2009) Remote Sens. Lett. , vol.1 , pp. 187-194
    • Liu, D.1    Xia, F.2
  • 21
    • 84922357427 scopus 로고    scopus 로고
    • Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery
    • Ma, L.; Cheng, L.; Li, M.; Liu, Y.; Ma, X. Training set size, scale, and features in Geographic Object-Based Image Analysis of very high resolution unmanned aerial vehicle imagery. ISPRS J. Photogramm. Remote Sens. 2015, 102, 14-27.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.102 , pp. 14-27
    • Ma, L.1    Cheng, L.2    Li, M.3    Liu, Y.4    Ma, X.5
  • 23
    • 84864510265 scopus 로고    scopus 로고
    • A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery
    • Laliberte, A.S.; Browning, D.M.; Rango, A. A comparison of three feature selection methods for object-based classification of sub-decimeter resolution UltraCam-L imagery. Int. J. Appl. Earth Observ. Geoinf. 2012, 15, 70-78.
    • (2012) Int. J. Appl. Earth Observ. Geoinf. , vol.15 , pp. 70-78
    • Laliberte, A.S.1    Browning, D.M.2    Rango, A.3
  • 24
    • 85028012193 scopus 로고    scopus 로고
    • Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image
    • Li, L.; Solana, C.; Canters, F.; Kervyn, M. Testing random forest classification for identifying lava flows and mapping age groups on a single Landsat 8 image. J. Volcanol. Geotherm. Res. 2017, 345, 109-124.
    • (2017) J. Volcanol. Geotherm. Res. , vol.345 , pp. 109-124
    • Li, L.1    Solana, C.2    Canters, F.3    Kervyn, M.4
  • 25
    • 78650895053 scopus 로고    scopus 로고
    • Comparison of CBF, ANN and SVM classifiers for object based classification of high resolution satellite images
    • Honolulu, HI, USA, 25-30 July
    • Buddhiraju, K.M.; Rizvi, I.A. Comparison of CBF, ANN and SVM classifiers for object based classification of high resolution satellite images. In Proceedings of the Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25-30 July 2010; pp. 40-43.
    • (2010) Proceedings of the Geoscience and Remote Sensing Symposium , pp. 40-43
    • Buddhiraju, K.M.1    Rizvi, I.A.2
  • 26
    • 77956637110 scopus 로고    scopus 로고
    • Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data
    • Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for mapping urban features using Ikonos satellite data. Appl. Geogr. 2010, 30, 650-665.
    • (2010) Appl. Geogr. , vol.30 , pp. 650-665
    • Bhaskaran, S.1    Paramananda, S.2    Ramnarayan, M.3
  • 28
    • 84979944094 scopus 로고    scopus 로고
    • Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery
    • Springer: Berlin/Heidelberg, Germany,
    • Kim, M.; Madden, M.; Warner, T. Estimation of optimal image object size for the segmentation of forest stands with multispectral IKONOS imagery. In Object-Based Image Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 291-307.
    • (2008) Object-Based Image Analysis , pp. 291-307
    • Kim, M.1    Madden, M.2    Warner, T.3
  • 29
    • 84890997760 scopus 로고    scopus 로고
    • Semiautomatic Object-Oriented Landslide Recognition Scheme From Multisensor Optical Imagery and DEM
    • Rau, J.Y.; Jhan, J.P.; Rau, R.J. Semiautomatic Object-Oriented Landslide Recognition Scheme From Multisensor Optical Imagery and DEM. IEEE Trans. Geosci. Remote Sens. 2013, 52, 1336-1349.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.52 , pp. 1336-1349
    • Rau, J.Y.1    Jhan, J.P.2    Rau, R.J.3
  • 30
    • 33747105856 scopus 로고    scopus 로고
    • Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation
    • Espindola, G.M.; Camara, G.; Reis, I.A.; Bins, L.S.; Monteiro, A.M. Parameter selection for region-growing image segmentation algorithms using spatial autocorrelation. Int. J. Remote Sens. 2006, 27, 3035-3040.
    • (2006) Int. J. Remote Sens. , vol.27 , pp. 3035-3040
    • Espindola, G.M.1    Camara, G.2    Reis, I.A.3    Bins, L.S.4    Monteiro, A.M.5
  • 31
    • 34249730857 scopus 로고    scopus 로고
    • The comparison index: A tool for assessing the accuracy of image segmentation
    • Möller, M.; Lymburner, L.; Volk, M. The comparison index: A tool for assessing the accuracy of image segmentation. Int. J. Appl. Earth Observ. Geoinf. 2007, 9, 311-321.
    • (2007) Int. J. Appl. Earth Observ. Geoinf. , vol.9 , pp. 311-321
    • Möller, M.1    Lymburner, L.2    Volk, M.3
  • 33
    • 85032582196 scopus 로고    scopus 로고
    • A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images
    • Gao, H.; Tang, Y.; Jing, L.; Li, H.; Ding, H. A Novel Unsupervised Segmentation Quality Evaluation Method for Remote Sensing Images. Sensors 2017, 17, 2427.
    • (2017) Sensors , vol.17 , pp. 2427
    • Gao, H.1    Tang, Y.2    Jing, L.3    Li, H.4    Ding, H.5
  • 34
    • 85010650978 scopus 로고    scopus 로고
    • Drone-based land-cover mapping using a fuzzy unordered rule induction algorithm integrated into object-based image analysis
    • Kalantar, B.; Mansor, S.B.; Sameen, M.I.; Pradhan, B.; Shafri, H.Z.M. Drone-based land-cover mapping using a fuzzy unordered rule induction algorithm integrated into object-based image analysis. Int. J. Remote Sens. 2017, 38, 2535-2556.
    • (2017) Int. J. Remote Sens. , vol.38 , pp. 2535-2556
    • Kalantar, B.1    Mansor, S.B.2    Sameen, M.I.3    Pradhan, B.4    Shafri, H.Z.M.5
  • 36
    • 85037527926 scopus 로고    scopus 로고
    • Supervised methods of image segmentation accuracy assessment in land cover mapping
    • Costa, H.; Foody, G.M.; Boyd, D.S. Supervised methods of image segmentation accuracy assessment in land cover mapping. Remote Sens. Environ. 2018, 205, 338-351.
    • (2018) Remote Sens. Environ. , vol.205 , pp. 338-351
    • Costa, H.1    Foody, G.M.2    Boyd, D.S.3
  • 37
    • 41949100170 scopus 로고    scopus 로고
    • Image segmentation evaluation: A survey of unsupervised methods
    • Zhang, H.; Fritts, J.E.; Goldman, S.A. Image segmentation evaluation: A survey of unsupervised methods. Comput. Vis. Image Understand. 2008, 110, 260-280.
    • (2008) Comput. Vis. Image Understand. , vol.110 , pp. 260-280
    • Zhang, H.1    Fritts, J.E.2    Goldman, S.A.3
  • 38
    • 84911422465 scopus 로고    scopus 로고
    • Recursive feature selection based on non-parallel SVMs and its application to hyperspectral image classification
    • Quebec City, QC, Canada, 13-18 July
    • Kaya, G.T.; Torun, Y.; Küçük, C. Recursive feature selection based on non-parallel SVMs and its application to hyperspectral image classification. In Proceedings of the Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13-18 July 2014; pp. 3558-3561.
    • (2014) Proceedings of the Geoscience and Remote Sensing Symposium , pp. 3558-3561
    • Kaya, G.T.1    Torun, Y.2    Küçük, C.3
  • 40
    • 84866469096 scopus 로고    scopus 로고
    • A Variance Reduction Framework for Stable Feature Selection
    • Han, Y.; Yu, L. A Variance Reduction Framework for Stable Feature Selection. Stat. Anal. Data Min. 2012, 5, 428-445.
    • (2012) Stat. Anal. Data Min. , vol.5 , pp. 428-445
    • Han, Y.1    Yu, L.2
  • 41
    • 84939839735 scopus 로고    scopus 로고
    • Locality sensitivity discriminant analysis-based feature ranking of humanemotion actions recognition
    • Khair, N.M.; Hariharan, M.; Yaacob, S.; Basah, S.N. Locality sensitivity discriminant analysis-based feature ranking of humanemotion actions recognition. J. Phys. Therapy Sci. 2015, 27, 2649-2653.
    • (2015) J. Phys. Therapy Sci. , vol.27 , pp. 2649-2653
    • Khair, N.M.1    Hariharan, M.2    Yaacob, S.3    Basah, S.N.4
  • 42
    • 84891667055 scopus 로고    scopus 로고
    • comparative evaluation of filter-based feature selection methods for hyper-spectral band selection
    • Wu, B.; Chen, C.; Kechadi, T.M.; Sun, L. comparative evaluation of filter-based feature selection methods for hyper-spectral band selection. Int. J. Remote Sens. 2013, 34, 7974-7990.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 7974-7990
    • Wu, B.1    Chen, C.2    Kechadi, T.M.3    Sun, L.4
  • 43
    • 85014443830 scopus 로고    scopus 로고
    • Automated Epileptic Seizure Detection Using Improved Correlation-based Feature Selection with Random Forest Classifier
    • Mursalin, M.; Zhang, Y.; Chen, Y.; Chawla, N.V. Automated Epileptic Seizure Detection Using Improved Correlation-based Feature Selection with Random Forest Classifier. Neurocomputing 2017, 241, 204-214.
    • (2017) Neurocomputing , vol.241 , pp. 204-214
    • Mursalin, M.1    Zhang, Y.2    Chen, Y.3    Chawla, N.V.4
  • 44
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5-32.
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1
  • 45
  • 46
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157-1182.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 47
    • 0036161259 scopus 로고    scopus 로고
    • Erratum: Gene selection for cancer classification using support vector machines
    • Guyon, I. Erratum: Gene selection for cancer classification using support vector machines. Mach. Learn. 2001, 46, 389-422.
    • (2001) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1
  • 50
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189-1232.
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 51
    • 84455200427 scopus 로고    scopus 로고
    • A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery
    • Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259-272.
    • (2012) Remote Sens. Environ. , vol.118 , pp. 259-272
    • Duro, D.C.1    Franklin, S.E.2    Dubé, M.G.3
  • 52
    • 85044208273 scopus 로고    scopus 로고
    • An Object-Based Image Analysis Method for Enhancing Classification of Land Covers Using Fully Convolutional Networks and Multi-View Images of Small Unmanned Aerial System
    • Liu, T.; Abdelrahman, A. An Object-Based Image Analysis Method for Enhancing Classification of Land Covers Using Fully Convolutional Networks and Multi-View Images of Small Unmanned Aerial System. Remote Sens. 2018, 10, 457.
    • (2018) Remote Sens. , vol.10 , pp. 457
    • Liu, T.1    Abdelrahman, A.2
  • 53
    • 85014908663 scopus 로고    scopus 로고
    • Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers
    • Ma, L.; Fu, T.; Blaschke, T.; Li, M.; Tiede, D.; Zhou, Z.; Ma, X.; Chen, D. Evaluation of Feature Selection Methods for Object-Based Land Cover Mapping of Unmanned Aerial Vehicle Imagery Using Random Forest and Support Vector Machine Classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 51.
    • (2017) ISPRS Int. J. Geo-Inf. , vol.6 , pp. 51
    • Ma, L.1    Fu, T.2    Blaschke, T.3    Li, M.4    Tiede, D.5    Zhou, Z.6    Ma, X.7    Chen, D.8
  • 54
    • 0036161259 scopus 로고    scopus 로고
    • Gene Selection for Cancer Classification using Support Vector Machines
    • Guyon, I.;Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 55
    • 78650432280 scopus 로고    scopus 로고
    • A study on classification and monitoring of winter wheat growth status by Landsat/TM image
    • Li,W.; Li, H.;Wang, J.; Huang,W. A study on classification and monitoring of winter wheat growth status by Landsat/TM image. J. Triticeae Crops 2010, 30, 92-95.
    • (2010) J. Triticeae Crops , vol.30 , pp. 92-95
    • Li, W.1    Li, H.2    Wang, J.3    Huang, W.4
  • 56
    • 84862659978 scopus 로고    scopus 로고
    • Endmember abundance calibration method for paddy rice area extraction from MODIS data based on independent component analysis
    • Liu, J.; Zhu, W.; Sun, G.; Zhang, J.; Jiang, N. Endmember abundance calibration method for paddy rice area extraction from MODIS data based on independent component analysis. Trans. Chin. Soc. Agric. Eng. 2012, 28, 103-108.
    • (2012) Trans. Chin. Soc. Agric. Eng. , vol.28 , pp. 103-108
    • Liu, J.1    Zhu, W.2    Sun, G.3    Zhang, J.4    Jiang, N.5
  • 57
    • 85062961936 scopus 로고    scopus 로고
    • Year-round production technology of green onion in Xinhua
    • Xue, Y.; Li, J. Year-round production technology of green onion in Xinhua. Shanghai Vegetables 2012, 6, 28-29.
    • (2012) Shanghai Vegetables , vol.6 , pp. 28-29
    • Xue, Y.1    Li, J.2
  • 58
    • 0031139633 scopus 로고    scopus 로고
    • Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview
    • Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. Geosci. Remote Sens. IEEE Trans. 2002, 35, 675-686.
    • (2002) Geosci. Remote Sens. IEEE Trans. , vol.35 , pp. 675-686
    • Vermote, E.F.1    Tanre, D.2    Deuze, J.L.3    Herman, M.4
  • 59
    • 84948693582 scopus 로고    scopus 로고
    • Geometric correction of GF-1 satellite images based on block adjustment of rational polynomial model
    • Liu, J.; Wang, L.; Yang, L.; Shao, J.; Teng, F.; Yang, F.; Fu, C. Geometric correction of GF-1 satellite images based on block adjustment of rational polynomial model. Trans. Chin. Soc. Agric. Eng. 2015, 31, 146-154.
    • (2015) Trans. Chin. Soc. Agric. Eng. , vol.31 , pp. 146-154
    • Liu, J.1    Wang, L.2    Yang, L.3    Shao, J.4    Teng, F.5    Yang, F.6    Fu, C.7
  • 60
    • 82155192323 scopus 로고    scopus 로고
    • Segment Optimization and Data-Driven Thresholding for Knowledge-Based Landslide Detection by Object-Based Image Analysis
    • Martha, T.R.; Kerle, N.; Westen, C.J.V.; Jetten, V.; Kumar, K.V. Segment Optimization and Data-Driven Thresholding for Knowledge-Based Landslide Detection by Object-Based Image Analysis. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4928-4943.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 4928-4943
    • Martha, T.R.1    Kerle, N.2    Westen, C.J.V.3    Jetten, V.4    Kumar, K.V.5
  • 61
    • 84862164250 scopus 로고    scopus 로고
    • Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery
    • Zhang, C.; Xie, Z. Combining object-based texture measures with a neural network for vegetation mapping in the Everglades from hyperspectral imagery. Remote Sens. Environ. 2012, 124, 310-320.
    • (2012) Remote Sens. Environ. , vol.124 , pp. 310-320
    • Zhang, C.1    Xie, Z.2
  • 62
    • 79957819255 scopus 로고    scopus 로고
    • Unsupervised image segmentation evaluation and refinement using a multi-scale approach
    • Johnson, B.; Xie, Z. Unsupervised image segmentation evaluation and refinement using a multi-scale approach. Isprs J. Photogramm. Remote Sens. 2011, 66, 473-483.
    • (2011) Isprs J. Photogramm. Remote Sens. , vol.66 , pp. 473-483
    • Johnson, B.1    Xie, Z.2
  • 63
    • 85028358022 scopus 로고    scopus 로고
    • On the objectivity of the objective function-Problems with unsupervised segmentation evaluation based on global score and a possible remedy
    • Böck, S.; Immitzer, M.; Atzberger, C. On the objectivity of the objective function-Problems with unsupervised segmentation evaluation based on global score and a possible remedy. Remote Sens. 2017, 9, 769.
    • (2017) Remote Sens. , vol.9 , pp. 769
    • Böck, S.1    Immitzer, M.2    Atzberger, C.3
  • 66
    • 0028668157 scopus 로고
    • Development of vegetation and soil indices for MODIS-EOS
    • Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224-234.
    • (1994) Remote Sens. Environ. , vol.49 , pp. 224-234
    • Huete, A.1    Justice, C.2    Liu, H.3
  • 67
    • 0030429663 scopus 로고    scopus 로고
    • NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space
    • Gao, B.C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257-266.
    • (1996) Remote Sens. Environ. , vol.58 , pp. 257-266
    • Gao, B.C.1
  • 68
    • 33747136902 scopus 로고    scopus 로고
    • Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery
    • Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025-3033.
    • (2006) Int. J. Remote Sens. , vol.27 , pp. 3025-3033
    • Xu, H.1
  • 69
    • 0031277948 scopus 로고    scopus 로고
    • The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data
    • Jurgens, C. The modified normalized difference vegetation index (mNDVI) a new index to determine frost damages in agriculture based on Landsat TM data. Int. J. Remote Sens. 1997, 18, 3583-3594.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 3583-3594
    • Jurgens, C.1
  • 70
    • 84862009037 scopus 로고    scopus 로고
    • Meta-Learning for Evolutionary Parameter Optimization of Classifiers
    • Reif, M.; Shafait, F.; Dengel, A. Meta-Learning for Evolutionary Parameter Optimization of Classifiers. Mach. Learn. 2012, 87, 357-380.
    • (2012) Mach. Learn. , vol.87 , pp. 357-380
    • Reif, M.1    Shafait, F.2    Dengel, A.3
  • 71
    • 84894065168 scopus 로고    scopus 로고
    • Fault Diagnosis in Benchmark Process Control System Using Stochastic Gradient Boosted Decision Trees
    • Chopra, T.; Vajpai, J. Fault Diagnosis in Benchmark Process Control System Using Stochastic Gradient Boosted Decision Trees. Int. J. Soft Comput. Eng. 2011, 1, 98-101.
    • (2011) Int. J. Soft Comput. Eng. , vol.1 , pp. 98-101
    • Chopra, T.1    Vajpai, J.2
  • 72
    • 85038214973 scopus 로고    scopus 로고
    • Combining Partial Least Squares and the Gradient-Boosting Method for Soil Property Retrieval Using Visible Near-Infrared Shortwave Infrared Spectra
    • Liu, L.; Ji, M.; Buchroithner, M. Combining Partial Least Squares and the Gradient-Boosting Method for Soil Property Retrieval Using Visible Near-Infrared Shortwave Infrared Spectra. Remote Sens. 2017, 9, 1299.
    • (2017) Remote Sens. , vol.9 , pp. 1299
    • Liu, L.1    Ji, M.2    Buchroithner, M.3
  • 73
    • 11144336199 scopus 로고    scopus 로고
    • The nature of statistical learning theory
    • Cherkassky, V. The nature of statistical learning theory. IEEE Trans. Neural Netw. 2002, 38, 409.
    • (2002) IEEE Trans. Neural Netw. , vol.38 , pp. 409
    • Cherkassky, V.1
  • 75
    • 0024165377 scopus 로고
    • The derivation of global estimates from a confusion matrix
    • HAY, A.M. The derivation of global estimates from a confusion matrix. Int. J. Remote Sens. 1988, 9, 1395-1398.
    • (1988) Int. J. Remote Sens. , vol.9 , pp. 1395-1398
    • HAY, A.M.1
  • 76
    • 85020155293 scopus 로고    scopus 로고
    • Typical Water-Land Utilization GIAHS in Low-Lying Areas: The Xinghua Duotian Agrosystem Example in China
    • Bai, Y.; Sun, X.; Tian, M.; Fuller, A.M. Typical Water-Land Utilization GIAHS in Low-Lying Areas: The Xinghua Duotian Agrosystem Example in China. J. Resour. Ecol. 2014, 5, 320-327.
    • (2014) J. Resour. Ecol. , vol.5 , pp. 320-327
    • Bai, Y.1    Sun, X.2    Tian, M.3    Fuller, A.M.4
  • 77
    • 42749086766 scopus 로고    scopus 로고
    • Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem
    • Chi, M.; Rui, F.; Bruzzone, L. Classification of hyperspectral remote-sensing data with primal SVM for small-sized training dataset problem. Adv. Space Res. 2008, 41, 1793-1799.
    • (2008) Adv. Space Res. , vol.41 , pp. 1793-1799
    • Chi, M.1    Rui, F.2    Bruzzone, L.3
  • 78
    • 84890481440 scopus 로고    scopus 로고
    • A classification scheme for 'high-dimensional-small-sample-size' data using soda and ridge-SVM with microwave measurement applications
    • Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26-31 May
    • Yu, Y.; McKelvey, T.; Kung, S. A classification scheme for 'high-dimensional-small-sample-size' data using soda and ridge-SVM with microwave measurement applications. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC, Canada, 26-31 May 2013; pp. 3542-3546.
    • (2013) Proceedings of the 2013 IEEE International Conference on Acoustics , pp. 3542-3546
    • Yu, Y.1    McKelvey, T.2    Kung, S.3
  • 79
    • 84865742501 scopus 로고    scopus 로고
    • Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using Ant Colony Optimization
    • Samadzadegan, F.; Hasani, H.; Schenk, T. Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using Ant Colony Optimization. Can. J. Remote Sens. 2012, 38, 139-156.
    • (2012) Can. J. Remote Sens. , vol.38 , pp. 139-156
    • Samadzadegan, F.1    Hasani, H.2    Schenk, T.3
  • 80
    • 84896871797 scopus 로고    scopus 로고
    • SVM Classification Model Parameters Optimized by Improved Genetic Algorithm
    • Mao, Q.H.; Ma, H.W.; Zhang, X.H. SVM Classification Model Parameters Optimized by Improved Genetic Algorithm. Adv. Mater. Res. 2014, 889-890, 617-621.
    • (2014) Adv. Mater. Res , vol.889-890 , pp. 617-621
    • Mao, Q.H.1    Ma, H.W.2    Zhang, X.H.3
  • 81
    • 85048960240 scopus 로고    scopus 로고
    • Mapping coastal marine habitats and delineating the deep limits of the Neptune's seagrass meadows using very high resolution Earth observation data
    • Poursanidis, D.; Topouzelis, K.; Chrysoulakis, N. Mapping coastal marine habitats and delineating the deep limits of the Neptune's seagrass meadows using very high resolution Earth observation data. Int. J. Remote Sens. 2018, 39, 8670-8687.
    • (2018) Int. J. Remote Sens. , vol.39 , pp. 8670-8687
    • Poursanidis, D.1    Topouzelis, K.2    Chrysoulakis, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.