-
1
-
-
77956888769
-
Causal diagrams for empirical research (with discussion)
-
Pearl J. Causal diagrams for empirical research (with discussion). Biometrika. 1995;82:669–710.
-
(1995)
Biometrika
, vol.82
, pp. 669-710
-
-
Pearl, J.1
-
5
-
-
0038334174
-
Quantifying biases in causal models: classical confounding vs collider-stratification bias
-
Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology. 2003;14:300–6.
-
(2003)
Epidemiology
, vol.14
, pp. 300-306
-
-
Greenland, S.1
-
6
-
-
84984992922
-
To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias (with comments)
-
Ding P, Miratrix LW. To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias (with comments). J Causal Infer. 2015;3:41–57.
-
(2015)
J Causal Infer
, vol.3
, pp. 41-57
-
-
Ding, P.1
Miratrix, L.W.2
-
7
-
-
67549095644
-
Letter to the editor
-
Sjølander A. Letter to the editor. Stat Med. 2009;28:1416–20.
-
(2009)
Stat Med
, vol.28
, pp. 1416-1420
-
-
Sjølander, A.1
-
8
-
-
77952717253
-
Illustrating bias due to conditioning on a collider
-
Cole SR, Platt RW, Schisterman EF, Chu H, Westreich D, Richardson D, Poole C. Illustrating bias due to conditioning on a collider. Int J Epidemiol. 2010;39:417–20.
-
(2010)
Int J Epidemiol
, vol.39
, pp. 417-420
-
-
Cole, S.R.1
Platt, R.W.2
Schisterman, E.F.3
Chu, H.4
Westreich, D.5
Richardson, D.6
Poole, C.7
-
9
-
-
80054726997
-
A new criterion for confounder selection
-
VanderWeele TJ, Shpitser I. A new criterion for confounder selection. Biometrics. 2011;67:1406–13.
-
(2011)
Biometrics
, vol.67
, pp. 1406-1413
-
-
VanderWeele, T.J.1
Shpitser, I.2
-
11
-
-
84902296033
-
Do instrumental variables belong in propensity scores?
-
Bhattacharya J, Vogt W. Do instrumental variables belong in propensity scores? Int J Stat Econ. 2012;9:107–27.
-
(2012)
Int J Stat Econ
, vol.9
, pp. 107-127
-
-
Bhattacharya, J.1
Vogt, W.2
-
12
-
-
80053281276
-
Effects of adjusting for instrumental variables on bias and precision of effect estimates
-
Myers JA, Rassen JA, Gagne JJ, Huybrechts KF, Schneeweiss S, Rothman KJ, Joffee MM, Glynn RJ. Effects of adjusting for instrumental variables on bias and precision of effect estimates. Am J Epidemiol. 2011;174:1213–22.
-
(2011)
Am J Epidemiol
, vol.174
, pp. 1213-1222
-
-
Myers, J.A.1
Rassen, J.A.2
Gagne, J.J.3
Huybrechts, K.F.4
Schneeweiss, S.5
Rothman, K.J.6
Joffee, M.M.7
Glynn, R.J.8
-
13
-
-
80053137535
-
On a class of bias-amplifying variables that endanger effect estimates
-
Grunwald P, Spirtes P, Corvallis, Oregon: Association for Uncetainty in Artificial Intelligence
-
Pearl J. On a class of bias-amplifying variables that endanger effect estimates. In: Grunwald P, Spirtes P, editors. Proceedings of the 26th conferenec on uncertainty in artificial intelligence (UAI 2010). Corvallis, Oregon: Association for Uncetainty in Artificial Intelligence; 2010. p. 425–32.
-
(2010)
Proceedings of the 26Th Conferenec on Uncertainty in Artificial Intelligence (UAI 2010)
, pp. 425-432
-
-
Pearl, J.1
-
15
-
-
84959281507
-
Should instrumental variables be used as matching variables?
-
Wooldridge J. Should instrumental variables be used as matching variables? Res Econ. 2016;70:232–7.
-
(2016)
Res Econ
, vol.70
, pp. 232-237
-
-
Wooldridge, J.1
-
16
-
-
85026907538
-
Instrumental variables as bias amplifiers with general outcome and confounding
-
Ding P, VanderWeele TJ, Robins JM. Instrumental variables as bias amplifiers with general outcome and confounding. Biometrika. 2017;104:291–302.
-
(2017)
Biometrika
, vol.104
, pp. 291-302
-
-
Ding, P.1
VanderWeele, T.J.2
Robins, J.M.3
-
17
-
-
84874772545
-
Bias attenuation results for nondifferentially mismeasured ordinal and coarsened confounders
-
Ogburn EL, VanderWeele TJ. Bias attenuation results for nondifferentially mismeasured ordinal and coarsened confounders. Biometrika. 2013;100:241–8.
-
(2013)
Biometrika
, vol.100
, pp. 241-248
-
-
Ogburn, E.L.1
VanderWeele, T.J.2
-
18
-
-
82055193052
-
On the nondifferential misclassification of a binary confounder
-
Ogburn EL, VanderWeele TJ. On the nondifferential misclassification of a binary confounder. Epidemiology. 2012;23:433–9.
-
(2012)
Epidemiology
, vol.23
, pp. 433-439
-
-
Ogburn, E.L.1
VanderWeele, T.J.2
-
19
-
-
0022973522
-
Identifiability, exchangeability, and epidemiologic confounding
-
Greenland S, Robins JM. Identifiability, exchangeability, and epidemiologic confounding. Int J Epidemiol. 1986;15:413–9.
-
(1986)
Int J Epidemiol
, vol.15
, pp. 413-419
-
-
Greenland, S.1
Robins, J.M.2
-
20
-
-
0000608132
-
Estimation of the time-dependent accelerated failure time model in the presence of confounding factors
-
Robins JM. Estimation of the time-dependent accelerated failure time model in the presence of confounding factors. Biometrika. 1992;79:321–34.
-
(1992)
Biometrika
, vol.79
, pp. 321-334
-
-
Robins, J.M.1
-
21
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;1983(70):41–55.
-
(1983)
Biometrika
, vol.1983
, Issue.70
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
22
-
-
0003016998
-
Issues in the analysis of selectivity bias
-
Stromsdorfer E, Farkas G, (eds), Sage, San Francisco
-
Barnow BS, Cain GG, Goldberger AS. Issues in the analysis of selectivity bias. In: Stromsdorfer E, Farkas G, editors. Evaluation studies, vol. 5. San Francisco: Sage; 1980.
-
(1980)
Evaluation studies
, vol.5
-
-
Barnow, B.S.1
Cain, G.G.2
Goldberger, A.S.3
-
23
-
-
1842429563
-
Nonparametric estimation of average treatment effects under exogeneity: a review
-
Imbens GW. Nonparametric estimation of average treatment effects under exogeneity: a review. Rev Econ Stat. 2004;86:4–29.
-
(2004)
Rev Econ Stat
, vol.86
, pp. 4-29
-
-
Imbens, G.W.1
-
24
-
-
74549138178
-
Concerning the consistency assumption in causal inference
-
VanderWeele TJ. Concerning the consistency assumption in causal inference. Epidemiology. 2009;20:880–3.
-
(2009)
Epidemiology
, vol.20
, pp. 880-883
-
-
VanderWeele, T.J.1
-
25
-
-
69949106881
-
Author’s reply (to Judea Pearl’s and Arvid Sjolander’s letters to the editor)
-
Rubin DB. Author’s reply (to Judea Pearl’s and Arvid Sjolander’s letters to the editor). Stat Med. 2009;28:1420–3.
-
(2009)
Stat Med
, vol.28
, pp. 1420-1423
-
-
Rubin, D.B.1
-
26
-
-
64349088593
-
For objective causal inference, design trumps analysis
-
Rubin DB. For objective causal inference, design trumps analysis. Ann Appl Stat. 2008;3:808–40.
-
(2008)
Ann Appl Stat.
, vol.3
, pp. 808-840
-
-
Rubin, D.B.1
-
27
-
-
0027468093
-
Toward a clearer definition of confounding
-
Weinberg CR. Toward a clearer definition of confounding. Am J Epidemiol. 1993;137:1–8.
-
(1993)
Am J Epidemiol
, vol.137
, pp. 1-8
-
-
Weinberg, C.R.1
-
28
-
-
53949098356
-
Methodological challenges in causal research on racial and ethnic patterns of cognitive trajectories: measurement, selection, and bias
-
Glymour MM, Weuve J, Chen JT. Methodological challenges in causal research on racial and ethnic patterns of cognitive trajectories: measurement, selection, and bias. Neuropsychol Rev. 2008;18:194–213.
-
(2008)
Neuropsychol Rev
, vol.18
, pp. 194-213
-
-
Glymour, M.M.1
Weuve, J.2
Chen, J.T.3
-
29
-
-
0033853460
-
An introduction to instrumental variables for epidemiologists
-
Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000;29:722–9.
-
(2000)
Int J Epidemiol
, vol.29
, pp. 722-729
-
-
Greenland, S.1
-
30
-
-
0346880128
-
Identification of causal effects using instrumental variables (with discussion)
-
Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables (with discussion). J Am Stat Assoc. 1996;91:444–72.
-
(1996)
J Am Stat Assoc
, vol.91
, pp. 444-472
-
-
Angrist, J.D.1
Imbens, G.W.2
Rubin, D.B.3
-
31
-
-
33748106661
-
Instruments for causal inference: an epidemiologist’s dream?
-
Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream? Epidemiology. 2006;17:360–72.
-
(2006)
Epidemiology
, vol.17
, pp. 360-372
-
-
Hernán, M.A.1
Robins, J.M.2
-
32
-
-
0018957326
-
The effect of misclassification in the presence of covariates
-
Greenland S. The effect of misclassification in the presence of covariates. Am J Epidemiol. 1980;112:564–9.
-
(1980)
Am J Epidemiol
, vol.112
, pp. 564-569
-
-
Greenland, S.1
-
33
-
-
0027478827
-
Bias due to non-differential misclassification of polytomous confounders
-
Brenner H. Bias due to non-differential misclassification of polytomous confounders. J Clin Epidemiol. 1993;46:57–63.
-
(1993)
J Clin Epidemiol
, vol.46
, pp. 57-63
-
-
Brenner, H.1
-
34
-
-
0017989533
-
Assessing effects of confounding variables
-
Schlesselman JJ. Assessing effects of confounding variables. Am J Epidemiol. 1978;108:3–8.
-
(1978)
Am J Epidemiol
, vol.108
, pp. 3-8
-
-
Schlesselman, J.J.1
-
35
-
-
0001679041
-
Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome
-
Rosenbaum PR, Rubin DB. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J R Stat Soc Ser B. 1983;45:212–8.
-
(1983)
J R Stat Soc Ser B
, vol.45
, pp. 212-218
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
36
-
-
0025160334
-
Indirect assessment of confounding: graphic description and limits on effect of adjusting for covariates
-
Flanders WD, Khoury MJ. Indirect assessment of confounding: graphic description and limits on effect of adjusting for covariates. Epidemiology. 1990;1:239–46.
-
(1990)
Epidemiology
, vol.1
, pp. 239-246
-
-
Flanders, W.D.1
Khoury, M.J.2
-
38
-
-
84956899837
-
Sensitivity analysis without assumptions
-
Ding P, VanderWeele TJ. Sensitivity analysis without assumptions. Epidemiology. 2016;27(3):368–77.
-
(2016)
Epidemiology
, vol.27
, Issue.3
, pp. 368-377
-
-
Ding, P.1
VanderWeele, T.J.2
-
39
-
-
85027461408
-
Sensitivity analysis in observational research: introducing the E-value
-
VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med. 2017;167:268–74.
-
(2017)
Ann Intern Med
, vol.167
, pp. 268-274
-
-
VanderWeele, T.J.1
Ding, P.2
-
41
-
-
0001815275
-
Causal inference from complex longitudinal data
-
Berkane M, (ed), Springer, New York
-
Robins JM. Causal inference from complex longitudinal data. In: Berkane M, editor. Latent variable modeling and applications to causality (Los Angeles, CA, 1994). Lecture notes in statistics, vol. 120. New York: Springer; 1997. p. 69–117.
-
(1997)
Latent variable modeling and applications to causality (Los Angeles, CA, 1994). Lecture notes in statistics
, vol.120
, pp. 69-117
-
-
Robins, J.M.1
-
42
-
-
75349099611
-
Intervening on risk factors for coronary heart disease: an application of the parametric g-formula
-
Taubman SL, Robins JM, Mittleman MA, Hernán MA. Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. Int J Epidemiol. 2009;38(6):1599–611.
-
(2009)
Int J Epidemiol
, vol.38
, Issue.6
, pp. 1599-1611
-
-
Taubman, S.L.1
Robins, J.M.2
Mittleman, M.A.3
Hernán, M.A.4
-
43
-
-
84891356723
-
Incidence of adult-onset asthma after hypothetical interventions on body mass index and physical activity. An application of the parametric g-formula
-
Garcia-Aymerich J, Varraso R, Danaei G, Camargo CA, Hernán MA. Incidence of adult-onset asthma after hypothetical interventions on body mass index and physical activity. An application of the parametric g-formula. Am J Epidemiol. 2014;179(1):20–6.
-
(2014)
Am J Epidemiol
, vol.179
, Issue.1
, pp. 20-26
-
-
Garcia-Aymerich, J.1
Varraso, R.2
Danaei, G.3
Camargo, C.A.4
Hernán, M.A.5
-
44
-
-
84871762709
-
Hypothetical lifestyle interventions in middle-aged women and risk of type 2 diabetes: a 24-year prospective study
-
Danaei G, Pan A, Hu FB, Hernán MA. Hypothetical lifestyle interventions in middle-aged women and risk of type 2 diabetes: a 24-year prospective study. Epidemiology. 2013;24(1):122–8.
-
(2013)
Epidemiology
, vol.24
, Issue.1
, pp. 122-128
-
-
Danaei, G.1
Pan, A.2
Hu, F.B.3
Hernán, M.A.4
-
45
-
-
84881175717
-
Changes in fish consumption in midlife and the risk of coronary heart disease in men and women
-
Lajous M, Willett WC, Robins JM, Young JG, Rimm EB, Mozaffarian D, Hernán MA. Changes in fish consumption in midlife and the risk of coronary heart disease in men and women. Am J Epidemiol. 2013;178(3):382–91.
-
(2013)
Am J Epidemiol
, vol.178
, Issue.3
, pp. 382-391
-
-
Lajous, M.1
Willett, W.C.2
Robins, J.M.3
Young, J.G.4
Rimm, E.B.5
Mozaffarian, D.6
Hernán, M.A.7
-
46
-
-
84986295301
-
Causal inference and longitudinal data: a case study of religion and mental health
-
VanderWeele TJ, Jackson JW, Li S. Causal inference and longitudinal data: a case study of religion and mental health. Soc Psychiatry Psychiatr Epidemiol. 2016;51:1457–66.
-
(2016)
Soc Psychiatry Psychiatr Epidemiol
, vol.51
, pp. 1457-1466
-
-
VanderWeele, T.J.1
Jackson, J.W.2
Li, S.3
-
47
-
-
0027142483
-
Simulation study of confounder-selection strategies
-
Maldonado G, Greenland S. Simulation study of confounder-selection strategies. Am J Epidemiol. 1993;138:923–36.
-
(1993)
Am J Epidemiol
, vol.138
, pp. 923-936
-
-
Maldonado, G.1
Greenland, S.2
-
48
-
-
40049100642
-
Invited commentary: variable selection versus shrinkage in the control of multiple confounders
-
Greenland S. Invited commentary: variable selection versus shrinkage in the control of multiple confounders. Am J Epidemiol. 2008;167:523–9.
-
(2008)
Am J Epidemiol
, vol.167
, pp. 523-529
-
-
Greenland, S.1
-
49
-
-
84899830035
-
Inference on treatment effects after selection among high-dimensional controls
-
Belloni A, Chernozhukov V, Hansen C. Inference on treatment effects after selection among high-dimensional controls. Rev Econ Stud. 2014;81:608–50.
-
(2014)
Rev Econ Stud
, vol.81
, pp. 608-650
-
-
Belloni, A.1
Chernozhukov, V.2
Hansen, C.3
-
50
-
-
84938561538
-
Valid post-selection and post-regularization inference: an elementary, general approach
-
Chernozhukov V, Hansen C, Spindler M. Valid post-selection and post-regularization inference: an elementary, general approach. Annu Rev Econ. 2015;7:649–88.
-
(2015)
Annu Rev Econ
, vol.7
, pp. 649-688
-
-
Chernozhukov, V.1
Hansen, C.2
Spindler, M.3
-
51
-
-
84963614704
-
Exact post-selection inference with the lasso
-
Lee JD, Sun DL, Sun Y, Taylor JE. Exact post-selection inference with the lasso. Ann Stat. 2016;44(3):907–27.
-
(2016)
Ann Stat
, vol.44
, Issue.3
, pp. 907-927
-
-
Lee, J.D.1
Sun, D.L.2
Sun, Y.3
Taylor, J.E.4
-
52
-
-
0002864224
-
Confounding and collapsibility in causal inference
-
Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46.
-
(1999)
Stat Sci
, vol.14
, pp. 29-46
-
-
Greenland, S.1
Robins, J.M.2
Pearl, J.3
-
53
-
-
67651042983
-
High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
-
Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology. 2009;20(4):512–22.
-
(2009)
Epidemiology
, vol.20
, Issue.4
, pp. 512-522
-
-
Schneeweiss, S.1
Rassen, J.A.2
Glynn, R.J.3
Avorn, J.4
Mogun, H.5
Brookhart, M.A.6
-
54
-
-
79958845225
-
Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples
-
Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S. Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples. Am J Epidemiol. 2011;173(12):1404–13.
-
(2011)
Am J Epidemiol
, vol.173
, Issue.12
, pp. 1404-1413
-
-
Rassen, J.A.1
Glynn, R.J.2
Brookhart, M.A.3
Schneeweiss, S.4
-
57
-
-
85014755307
-
Targeted maximum likelihood estimation for causal inference in observational studies
-
Schuler M, Rose S. Targeted maximum likelihood estimation for causal inference in observational studies. Am J Epidemiol. 2017;185(1):65–73.
-
(2017)
Am J Epidemiol
, vol.185
, Issue.1
, pp. 65-73
-
-
Schuler, M.1
Rose, S.2
|