메뉴 건너뛰기




Volumn 34, Issue 3, 2019, Pages 211-219

Principles of confounder selection

Author keywords

Causal inference; Collider; Confounder; Covariate adjustment; Selection

Indexed keywords

ARTICLE; INSTRUMENTAL VARIABLE ANALYSIS; EPIDEMIOLOGY; HUMAN; METHODOLOGY;

EID: 85062657470     PISSN: 03932990     EISSN: 15737284     Source Type: Journal    
DOI: 10.1007/s10654-019-00494-6     Document Type: Article
Times cited : (895)

References (57)
  • 1
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research (with discussion)
    • Pearl J. Causal diagrams for empirical research (with discussion). Biometrika. 1995;82:669–710.
    • (1995) Biometrika , vol.82 , pp. 669-710
    • Pearl, J.1
  • 5
    • 0038334174 scopus 로고    scopus 로고
    • Quantifying biases in causal models: classical confounding vs collider-stratification bias
    • Greenland S. Quantifying biases in causal models: classical confounding vs collider-stratification bias. Epidemiology. 2003;14:300–6.
    • (2003) Epidemiology , vol.14 , pp. 300-306
    • Greenland, S.1
  • 6
    • 84984992922 scopus 로고    scopus 로고
    • To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias (with comments)
    • Ding P, Miratrix LW. To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias (with comments). J Causal Infer. 2015;3:41–57.
    • (2015) J Causal Infer , vol.3 , pp. 41-57
    • Ding, P.1    Miratrix, L.W.2
  • 7
    • 67549095644 scopus 로고    scopus 로고
    • Letter to the editor
    • Sjølander A. Letter to the editor. Stat Med. 2009;28:1416–20.
    • (2009) Stat Med , vol.28 , pp. 1416-1420
    • Sjølander, A.1
  • 9
    • 80054726997 scopus 로고    scopus 로고
    • A new criterion for confounder selection
    • VanderWeele TJ, Shpitser I. A new criterion for confounder selection. Biometrics. 2011;67:1406–13.
    • (2011) Biometrics , vol.67 , pp. 1406-1413
    • VanderWeele, T.J.1    Shpitser, I.2
  • 11
    • 84902296033 scopus 로고    scopus 로고
    • Do instrumental variables belong in propensity scores?
    • Bhattacharya J, Vogt W. Do instrumental variables belong in propensity scores? Int J Stat Econ. 2012;9:107–27.
    • (2012) Int J Stat Econ , vol.9 , pp. 107-127
    • Bhattacharya, J.1    Vogt, W.2
  • 13
    • 80053137535 scopus 로고    scopus 로고
    • On a class of bias-amplifying variables that endanger effect estimates
    • Grunwald P, Spirtes P, Corvallis, Oregon: Association for Uncetainty in Artificial Intelligence
    • Pearl J. On a class of bias-amplifying variables that endanger effect estimates. In: Grunwald P, Spirtes P, editors. Proceedings of the 26th conferenec on uncertainty in artificial intelligence (UAI 2010). Corvallis, Oregon: Association for Uncetainty in Artificial Intelligence; 2010. p. 425–32.
    • (2010) Proceedings of the 26Th Conferenec on Uncertainty in Artificial Intelligence (UAI 2010) , pp. 425-432
    • Pearl, J.1
  • 15
    • 84959281507 scopus 로고    scopus 로고
    • Should instrumental variables be used as matching variables?
    • Wooldridge J. Should instrumental variables be used as matching variables? Res Econ. 2016;70:232–7.
    • (2016) Res Econ , vol.70 , pp. 232-237
    • Wooldridge, J.1
  • 16
    • 85026907538 scopus 로고    scopus 로고
    • Instrumental variables as bias amplifiers with general outcome and confounding
    • Ding P, VanderWeele TJ, Robins JM. Instrumental variables as bias amplifiers with general outcome and confounding. Biometrika. 2017;104:291–302.
    • (2017) Biometrika , vol.104 , pp. 291-302
    • Ding, P.1    VanderWeele, T.J.2    Robins, J.M.3
  • 17
    • 84874772545 scopus 로고    scopus 로고
    • Bias attenuation results for nondifferentially mismeasured ordinal and coarsened confounders
    • Ogburn EL, VanderWeele TJ. Bias attenuation results for nondifferentially mismeasured ordinal and coarsened confounders. Biometrika. 2013;100:241–8.
    • (2013) Biometrika , vol.100 , pp. 241-248
    • Ogburn, E.L.1    VanderWeele, T.J.2
  • 18
    • 82055193052 scopus 로고    scopus 로고
    • On the nondifferential misclassification of a binary confounder
    • Ogburn EL, VanderWeele TJ. On the nondifferential misclassification of a binary confounder. Epidemiology. 2012;23:433–9.
    • (2012) Epidemiology , vol.23 , pp. 433-439
    • Ogburn, E.L.1    VanderWeele, T.J.2
  • 19
    • 0022973522 scopus 로고
    • Identifiability, exchangeability, and epidemiologic confounding
    • Greenland S, Robins JM. Identifiability, exchangeability, and epidemiologic confounding. Int J Epidemiol. 1986;15:413–9.
    • (1986) Int J Epidemiol , vol.15 , pp. 413-419
    • Greenland, S.1    Robins, J.M.2
  • 20
    • 0000608132 scopus 로고
    • Estimation of the time-dependent accelerated failure time model in the presence of confounding factors
    • Robins JM. Estimation of the time-dependent accelerated failure time model in the presence of confounding factors. Biometrika. 1992;79:321–34.
    • (1992) Biometrika , vol.79 , pp. 321-334
    • Robins, J.M.1
  • 21
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;1983(70):41–55.
    • (1983) Biometrika , vol.1983 , Issue.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 22
    • 0003016998 scopus 로고
    • Issues in the analysis of selectivity bias
    • Stromsdorfer E, Farkas G, (eds), Sage, San Francisco
    • Barnow BS, Cain GG, Goldberger AS. Issues in the analysis of selectivity bias. In: Stromsdorfer E, Farkas G, editors. Evaluation studies, vol. 5. San Francisco: Sage; 1980.
    • (1980) Evaluation studies , vol.5
    • Barnow, B.S.1    Cain, G.G.2    Goldberger, A.S.3
  • 23
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: a review
    • Imbens GW. Nonparametric estimation of average treatment effects under exogeneity: a review. Rev Econ Stat. 2004;86:4–29.
    • (2004) Rev Econ Stat , vol.86 , pp. 4-29
    • Imbens, G.W.1
  • 24
    • 74549138178 scopus 로고    scopus 로고
    • Concerning the consistency assumption in causal inference
    • VanderWeele TJ. Concerning the consistency assumption in causal inference. Epidemiology. 2009;20:880–3.
    • (2009) Epidemiology , vol.20 , pp. 880-883
    • VanderWeele, T.J.1
  • 25
    • 69949106881 scopus 로고    scopus 로고
    • Author’s reply (to Judea Pearl’s and Arvid Sjolander’s letters to the editor)
    • Rubin DB. Author’s reply (to Judea Pearl’s and Arvid Sjolander’s letters to the editor). Stat Med. 2009;28:1420–3.
    • (2009) Stat Med , vol.28 , pp. 1420-1423
    • Rubin, D.B.1
  • 26
    • 64349088593 scopus 로고    scopus 로고
    • For objective causal inference, design trumps analysis
    • Rubin DB. For objective causal inference, design trumps analysis. Ann Appl Stat. 2008;3:808–40.
    • (2008) Ann Appl Stat. , vol.3 , pp. 808-840
    • Rubin, D.B.1
  • 27
    • 0027468093 scopus 로고
    • Toward a clearer definition of confounding
    • Weinberg CR. Toward a clearer definition of confounding. Am J Epidemiol. 1993;137:1–8.
    • (1993) Am J Epidemiol , vol.137 , pp. 1-8
    • Weinberg, C.R.1
  • 28
    • 53949098356 scopus 로고    scopus 로고
    • Methodological challenges in causal research on racial and ethnic patterns of cognitive trajectories: measurement, selection, and bias
    • Glymour MM, Weuve J, Chen JT. Methodological challenges in causal research on racial and ethnic patterns of cognitive trajectories: measurement, selection, and bias. Neuropsychol Rev. 2008;18:194–213.
    • (2008) Neuropsychol Rev , vol.18 , pp. 194-213
    • Glymour, M.M.1    Weuve, J.2    Chen, J.T.3
  • 29
    • 0033853460 scopus 로고    scopus 로고
    • An introduction to instrumental variables for epidemiologists
    • Greenland S. An introduction to instrumental variables for epidemiologists. Int J Epidemiol. 2000;29:722–9.
    • (2000) Int J Epidemiol , vol.29 , pp. 722-729
    • Greenland, S.1
  • 30
    • 0346880128 scopus 로고    scopus 로고
    • Identification of causal effects using instrumental variables (with discussion)
    • Angrist JD, Imbens GW, Rubin DB. Identification of causal effects using instrumental variables (with discussion). J Am Stat Assoc. 1996;91:444–72.
    • (1996) J Am Stat Assoc , vol.91 , pp. 444-472
    • Angrist, J.D.1    Imbens, G.W.2    Rubin, D.B.3
  • 31
    • 33748106661 scopus 로고    scopus 로고
    • Instruments for causal inference: an epidemiologist’s dream?
    • Hernán MA, Robins JM. Instruments for causal inference: an epidemiologist’s dream? Epidemiology. 2006;17:360–72.
    • (2006) Epidemiology , vol.17 , pp. 360-372
    • Hernán, M.A.1    Robins, J.M.2
  • 32
    • 0018957326 scopus 로고
    • The effect of misclassification in the presence of covariates
    • Greenland S. The effect of misclassification in the presence of covariates. Am J Epidemiol. 1980;112:564–9.
    • (1980) Am J Epidemiol , vol.112 , pp. 564-569
    • Greenland, S.1
  • 33
    • 0027478827 scopus 로고
    • Bias due to non-differential misclassification of polytomous confounders
    • Brenner H. Bias due to non-differential misclassification of polytomous confounders. J Clin Epidemiol. 1993;46:57–63.
    • (1993) J Clin Epidemiol , vol.46 , pp. 57-63
    • Brenner, H.1
  • 34
    • 0017989533 scopus 로고
    • Assessing effects of confounding variables
    • Schlesselman JJ. Assessing effects of confounding variables. Am J Epidemiol. 1978;108:3–8.
    • (1978) Am J Epidemiol , vol.108 , pp. 3-8
    • Schlesselman, J.J.1
  • 35
    • 0001679041 scopus 로고
    • Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome
    • Rosenbaum PR, Rubin DB. Assessing sensitivity to an unobserved binary covariate in an observational study with binary outcome. J R Stat Soc Ser B. 1983;45:212–8.
    • (1983) J R Stat Soc Ser B , vol.45 , pp. 212-218
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 36
    • 0025160334 scopus 로고
    • Indirect assessment of confounding: graphic description and limits on effect of adjusting for covariates
    • Flanders WD, Khoury MJ. Indirect assessment of confounding: graphic description and limits on effect of adjusting for covariates. Epidemiology. 1990;1:239–46.
    • (1990) Epidemiology , vol.1 , pp. 239-246
    • Flanders, W.D.1    Khoury, M.J.2
  • 38
    • 84956899837 scopus 로고    scopus 로고
    • Sensitivity analysis without assumptions
    • Ding P, VanderWeele TJ. Sensitivity analysis without assumptions. Epidemiology. 2016;27(3):368–77.
    • (2016) Epidemiology , vol.27 , Issue.3 , pp. 368-377
    • Ding, P.1    VanderWeele, T.J.2
  • 39
    • 85027461408 scopus 로고    scopus 로고
    • Sensitivity analysis in observational research: introducing the E-value
    • VanderWeele TJ, Ding P. Sensitivity analysis in observational research: introducing the E-value. Ann Intern Med. 2017;167:268–74.
    • (2017) Ann Intern Med , vol.167 , pp. 268-274
    • VanderWeele, T.J.1    Ding, P.2
  • 42
    • 75349099611 scopus 로고    scopus 로고
    • Intervening on risk factors for coronary heart disease: an application of the parametric g-formula
    • Taubman SL, Robins JM, Mittleman MA, Hernán MA. Intervening on risk factors for coronary heart disease: an application of the parametric g-formula. Int J Epidemiol. 2009;38(6):1599–611.
    • (2009) Int J Epidemiol , vol.38 , Issue.6 , pp. 1599-1611
    • Taubman, S.L.1    Robins, J.M.2    Mittleman, M.A.3    Hernán, M.A.4
  • 43
    • 84891356723 scopus 로고    scopus 로고
    • Incidence of adult-onset asthma after hypothetical interventions on body mass index and physical activity. An application of the parametric g-formula
    • Garcia-Aymerich J, Varraso R, Danaei G, Camargo CA, Hernán MA. Incidence of adult-onset asthma after hypothetical interventions on body mass index and physical activity. An application of the parametric g-formula. Am J Epidemiol. 2014;179(1):20–6.
    • (2014) Am J Epidemiol , vol.179 , Issue.1 , pp. 20-26
    • Garcia-Aymerich, J.1    Varraso, R.2    Danaei, G.3    Camargo, C.A.4    Hernán, M.A.5
  • 44
    • 84871762709 scopus 로고    scopus 로고
    • Hypothetical lifestyle interventions in middle-aged women and risk of type 2 diabetes: a 24-year prospective study
    • Danaei G, Pan A, Hu FB, Hernán MA. Hypothetical lifestyle interventions in middle-aged women and risk of type 2 diabetes: a 24-year prospective study. Epidemiology. 2013;24(1):122–8.
    • (2013) Epidemiology , vol.24 , Issue.1 , pp. 122-128
    • Danaei, G.1    Pan, A.2    Hu, F.B.3    Hernán, M.A.4
  • 46
    • 84986295301 scopus 로고    scopus 로고
    • Causal inference and longitudinal data: a case study of religion and mental health
    • VanderWeele TJ, Jackson JW, Li S. Causal inference and longitudinal data: a case study of religion and mental health. Soc Psychiatry Psychiatr Epidemiol. 2016;51:1457–66.
    • (2016) Soc Psychiatry Psychiatr Epidemiol , vol.51 , pp. 1457-1466
    • VanderWeele, T.J.1    Jackson, J.W.2    Li, S.3
  • 47
    • 0027142483 scopus 로고
    • Simulation study of confounder-selection strategies
    • Maldonado G, Greenland S. Simulation study of confounder-selection strategies. Am J Epidemiol. 1993;138:923–36.
    • (1993) Am J Epidemiol , vol.138 , pp. 923-936
    • Maldonado, G.1    Greenland, S.2
  • 48
    • 40049100642 scopus 로고    scopus 로고
    • Invited commentary: variable selection versus shrinkage in the control of multiple confounders
    • Greenland S. Invited commentary: variable selection versus shrinkage in the control of multiple confounders. Am J Epidemiol. 2008;167:523–9.
    • (2008) Am J Epidemiol , vol.167 , pp. 523-529
    • Greenland, S.1
  • 49
    • 84899830035 scopus 로고    scopus 로고
    • Inference on treatment effects after selection among high-dimensional controls
    • Belloni A, Chernozhukov V, Hansen C. Inference on treatment effects after selection among high-dimensional controls. Rev Econ Stud. 2014;81:608–50.
    • (2014) Rev Econ Stud , vol.81 , pp. 608-650
    • Belloni, A.1    Chernozhukov, V.2    Hansen, C.3
  • 50
    • 84938561538 scopus 로고    scopus 로고
    • Valid post-selection and post-regularization inference: an elementary, general approach
    • Chernozhukov V, Hansen C, Spindler M. Valid post-selection and post-regularization inference: an elementary, general approach. Annu Rev Econ. 2015;7:649–88.
    • (2015) Annu Rev Econ , vol.7 , pp. 649-688
    • Chernozhukov, V.1    Hansen, C.2    Spindler, M.3
  • 51
    • 84963614704 scopus 로고    scopus 로고
    • Exact post-selection inference with the lasso
    • Lee JD, Sun DL, Sun Y, Taylor JE. Exact post-selection inference with the lasso. Ann Stat. 2016;44(3):907–27.
    • (2016) Ann Stat , vol.44 , Issue.3 , pp. 907-927
    • Lee, J.D.1    Sun, D.L.2    Sun, Y.3    Taylor, J.E.4
  • 52
    • 0002864224 scopus 로고    scopus 로고
    • Confounding and collapsibility in causal inference
    • Greenland S, Robins JM, Pearl J. Confounding and collapsibility in causal inference. Stat Sci. 1999;14:29–46.
    • (1999) Stat Sci , vol.14 , pp. 29-46
    • Greenland, S.1    Robins, J.M.2    Pearl, J.3
  • 53
    • 67651042983 scopus 로고    scopus 로고
    • High-dimensional propensity score adjustment in studies of treatment effects using health care claims data
    • Schneeweiss S, Rassen JA, Glynn RJ, Avorn J, Mogun H, Brookhart MA. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology. 2009;20(4):512–22.
    • (2009) Epidemiology , vol.20 , Issue.4 , pp. 512-522
    • Schneeweiss, S.1    Rassen, J.A.2    Glynn, R.J.3    Avorn, J.4    Mogun, H.5    Brookhart, M.A.6
  • 54
    • 79958845225 scopus 로고    scopus 로고
    • Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples
    • Rassen JA, Glynn RJ, Brookhart MA, Schneeweiss S. Covariate selection in high-dimensional propensity score analyses of treatment effects in small samples. Am J Epidemiol. 2011;173(12):1404–13.
    • (2011) Am J Epidemiol , vol.173 , Issue.12 , pp. 1404-1413
    • Rassen, J.A.1    Glynn, R.J.2    Brookhart, M.A.3    Schneeweiss, S.4
  • 57
    • 85014755307 scopus 로고    scopus 로고
    • Targeted maximum likelihood estimation for causal inference in observational studies
    • Schuler M, Rose S. Targeted maximum likelihood estimation for causal inference in observational studies. Am J Epidemiol. 2017;185(1):65–73.
    • (2017) Am J Epidemiol , vol.185 , Issue.1 , pp. 65-73
    • Schuler, M.1    Rose, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.