메뉴 건너뛰기




Volumn 185, Issue 1, 2017, Pages 65-73

Targeted maximum likelihood estimation for causal inference in observational studies

Author keywords

Causal inference; Machine learning; Observational studies; Super learner; Targeted maximum likelihood estimation

Indexed keywords

EPIDEMIOLOGY; MACHINE LEARNING; MAXIMUM LIKELIHOOD ANALYSIS; OBSERVATIONAL METHOD; OPTIMIZATION; PARAMETER ESTIMATION; PROBABILITY; REGRESSION; TRADE-OFF;

EID: 85014755307     PISSN: 00029262     EISSN: 14766256     Source Type: Journal    
DOI: 10.1093/aje/kww165     Document Type: Article
Times cited : (271)

References (52)
  • 1
    • 65449125427 scopus 로고    scopus 로고
    • Estimating the effects of potential public health interventions on population disease burden: A step-by-step illustration of causal inference methods
    • Ahern J, Hubbard A, Galea S. Estimating the effects of potential public health interventions on population disease burden: a step-by-step illustration of causal inference methods. Am J Epidemiol. 2009;169(9):1140-1147.
    • (2009) Am J Epidemiol. , vol.169 , Issue.9 , pp. 1140-1147
    • Ahern, J.1    Hubbard, A.2    Galea, S.3
  • 2
    • 84936758183 scopus 로고    scopus 로고
    • Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects
    • Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of pleiotropic genetic variants to estimate causal effects. Am J Epidemiol. 2015;181(4):251-260.
    • (2015) Am J Epidemiol. , vol.181 , Issue.4 , pp. 251-260
    • Burgess, S.1    Thompson, S.G.2
  • 3
    • 79953851739 scopus 로고    scopus 로고
    • Doubly robust estimation of causal effects
    • Funk MJ, Westreich D, Wiesen C, et al. Doubly robust estimation of causal effects. Am J Epidemiol. 2011;173(7):761-767.
    • (2011) Am J Epidemiol. , vol.173 , Issue.7 , pp. 761-767
    • Funk, M.J.1    Westreich, D.2    Wiesen, C.3
  • 4
    • 84899551557 scopus 로고    scopus 로고
    • Estimation of treatment efficacy with complier average causal effects (CACE) in a randomized stepped wedge trial
    • Gruber JS, Arnold BF, Reygadas F, et al. Estimation of treatment efficacy with complier average causal effects (CACE) in a randomized stepped wedge trial. Am J Epidemiol. 2014;179(9):1134-1142.
    • (2014) Am J Epidemiol. , vol.179 , Issue.9 , pp. 1134-1142
    • Gruber, J.S.1    Arnold, B.F.2    Reygadas, F.3
  • 5
    • 33745842238 scopus 로고    scopus 로고
    • Estimating causal effects from epidemiological data
    • Hernan MA, Robins JM. Estimating causal effects from epidemiological data. J Epidemiol Commun Health. 2006;60(7):578-586.
    • (2006) J Epidemiol Commun Health , vol.60 , Issue.7 , pp. 578-586
    • Hernan, M.A.1    Robins, J.M.2
  • 6
    • 84890675733 scopus 로고    scopus 로고
    • Causal inference in occupational epidemiology: Accounting for the healthy worker effect by using structural nested models
    • Naimi AI, Richardson DB, Cole SR. Causal inference in occupational epidemiology: accounting for the healthy worker effect by using structural nested models. Am J Epidemiol. 2013;178(12):1681-1686.
    • (2013) Am J Epidemiol. , vol.178 , Issue.12 , pp. 1681-1686
    • Naimi, A.I.1    Richardson, D.B.2    Cole, S.R.3
  • 7
    • 80655149497 scopus 로고    scopus 로고
    • A weighting approach to causal effects and additive interaction in case-control studies: Marginal structural linear odds models
    • VanderWeele TJ, Vansteelandt S. A weighting approach to causal effects and additive interaction in case-control studies: marginal structural linear odds models. Am J Epidemiol. 2011;174(10):1197-1203.
    • (2011) Am J Epidemiol. , vol.174 , Issue.10 , pp. 1197-1203
    • VanderWeele, T.J.1    Vansteelandt, S.2
  • 8
    • 79958704133 scopus 로고    scopus 로고
    • An introduction to propensity score methods for reducing the effects of confounding in observational studies
    • Austin PC. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate Behav Res. 2011;46(3):399-424.
    • (2011) Multivariate Behav Res. , vol.46 , Issue.3 , pp. 399-424
    • Austin, P.C.1
  • 9
    • 84944796673 scopus 로고    scopus 로고
    • Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies
    • Austin PC, Stuart EA. Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies. Stat Med. 2015;34(28):3661-3679.
    • (2015) Stat Med. , vol.34 , Issue.28 , pp. 3661-3679
    • Austin, P.C.1    Stuart, E.A.2
  • 10
    • 77957806232 scopus 로고    scopus 로고
    • Matching methods for causal inference: A review and a look forward
    • Stuart EA. Matching methods for causal inference: a review and a look forward. Stat Sci. 2010;25(1):1-21.
    • (2010) Stat Sci. , vol.25 , Issue.1 , pp. 1-21
    • Stuart, E.A.1
  • 11
    • 46149139403 scopus 로고
    • A new approach to causal inference in mortality studies with a sustained exposure period - Application to control of the healthy worker survivor effect
    • Robins J. A new approach to causal inference in mortality studies with a sustained exposure period - application to control of the healthy worker survivor effect. Math Modelling. 1986;7(9-12):1393-1512.
    • (1986) Math Modelling , vol.7 , Issue.9-12 , pp. 1393-1512
    • Robins, J.1
  • 12
    • 79953852789 scopus 로고    scopus 로고
    • Implementation of G-computation on a simulated data set: Demonstration of a causal inference technique
    • Snowden JM, Rose S, Mortimer KM. Implementation of G-computation on a simulated data set: demonstration of a causal inference technique. Am J Epidemiol. 2011;173(7):731-738.
    • (2011) Am J Epidemiol. , vol.173 , Issue.7 , pp. 731-738
    • Snowden, J.M.1    Rose, S.2    Mortimer, K.M.3
  • 13
    • 79953904512 scopus 로고    scopus 로고
    • Invited commentary: G-computation - Lost in translation?
    • Vansteelandt S, Keiding N. Invited commentary: G-computation - lost in translation? Am J Epidemiol. 2011;173(7):739-742.
    • (2011) Am J Epidemiol. , vol.173 , Issue.7 , pp. 739-742
    • Vansteelandt, S.1    Keiding, N.2
  • 15
    • 33845971550 scopus 로고    scopus 로고
    • Targeted maximum likelihood learning
    • Article 11
    • van der Laan MJ, Rubin DB. Targeted maximum likelihood learning. Int J Biostat. 2006;2(1):Article 11.
    • (2006) Int J Biostat , vol.2 , Issue.1
    • Van Der Laan, M.J.1    Rubin, D.B.2
  • 16
    • 58149417330 scopus 로고
    • Estimating causal effects of treatments in randomized and nonrandomized studies
    • Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. J Educ Psychol. 1974;66(5):688-701.
    • (1974) J Educ Psychol. , vol.66 , Issue.5 , pp. 688-701
    • Rubin, D.B.1
  • 17
    • 84920420698 scopus 로고
    • Statistics and causal inference
    • Holland PW. Statistics and causal inference. J Am Stat Assoc. 1986;81(396):945-960.
    • (1986) J Am Stat Assoc. , vol.81 , Issue.396 , pp. 945-960
    • Holland, P.W.1
  • 18
    • 40549104115 scopus 로고    scopus 로고
    • Misunderstandings between experimentalists and observationalists about causal inference
    • Imai K, King G, Stuart E. Misunderstandings between experimentalists and observationalists about causal inference. J R Stat Soc Ser A. 2008;171(2):481-502.
    • (2008) J R Stat Soc Ser A , vol.171 , Issue.2 , pp. 481-502
    • Imai, K.1    King, G.2    Stuart, E.3
  • 19
    • 1842429563 scopus 로고    scopus 로고
    • Nonparametric estimation of average treatment effects under exogeneity: A review
    • Imbens GW. Nonparametric estimation of average treatment effects under exogeneity: a review. Rev Econ Stat. 2004;86(1):4-29.
    • (2004) Rev Econ Stat. , vol.86 , Issue.1 , pp. 4-29
    • Imbens, G.W.1
  • 20
    • 84950657856 scopus 로고
    • Randomization analysis of experimental data: The fisher randomization test comment
    • Rubin DB. Randomization analysis of experimental data: the fisher randomization test comment. J Am Stat Assoc. 1980;75(371):591-593.
    • (1980) J Am Stat Assoc. , vol.75 , Issue.371 , pp. 591-593
    • Rubin, D.B.1
  • 21
    • 84950922994 scopus 로고
    • Statistics and causal inference: Comment: Which ifs have causal answers
    • Rubin DB. Statistics and causal inference: comment: which ifs have causal answers. J Am Stat Assoc. 1986;81(396):961-962.
    • (1986) J Am Stat Assoc. , vol.81 , Issue.396 , pp. 961-962
    • Rubin, D.B.1
  • 22
    • 0022973522 scopus 로고
    • Identifiability, exchangeability, and epidemiological confounding
    • Greenland S, Robins JM. Identifiability, exchangeability, and epidemiological confounding. Int J Epidemiol. 1986;15(3):413-419.
    • (1986) Int J Epidemiol. , vol.15 , Issue.3 , pp. 413-419
    • Greenland, S.1    Robins, J.M.2
  • 23
    • 84862907581 scopus 로고    scopus 로고
    • Diagnosing and responding to violations in the positivity assumption
    • Petersen ML, Porter KE, Gruber S, et al. Diagnosing and responding to violations in the positivity assumption. Stat Methods Med Res. 2012;21(1):31-54.
    • (2012) Stat Methods Med Res. , vol.21 , Issue.1 , pp. 31-54
    • Petersen, M.L.1    Porter, K.E.2    Gruber, S.3
  • 25
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika. 1983;70(1):41-55.
    • (1983) Biometrika , vol.70 , Issue.1 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 26
    • 4444230264 scopus 로고    scopus 로고
    • Stratification and weighting via the propensity score in estimation of causal treatment effects: A comparative study
    • Lunceford JK, Davidian M. Stratification and weighting via the propensity score in estimation of causal treatment effects: a comparative study. Stat Med. 2004;23(19):2937-2960.
    • (2004) Stat Med. , vol.23 , Issue.19 , pp. 2937-2960
    • Lunceford, J.K.1    Davidian, M.2
  • 27
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • Robins JM, Hernán MA, Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology. 2000;11(5):550-560.
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 550-560
    • Robins, J.M.1    Hernán, M.A.2    Brumback, B.3
  • 28
    • 46249131752 scopus 로고    scopus 로고
    • Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data
    • Kang JDY, Schafer JL. Demystifying double robustness: a comparison of alternative strategies for estimating a population mean from incomplete data. Stat Sci. 2007;22(4):523-539.
    • (2007) Stat Sci. , vol.22 , Issue.4 , pp. 523-539
    • Kang, J.D.Y.1    Schafer, J.L.2
  • 29
    • 46249085099 scopus 로고    scopus 로고
    • Comment: Performance of double-robust estimators when "inverse probability" weights are highly variable
    • Robins J, Sued M, Lei-Gomez Q, et al. Comment: performance of double-robust estimators when "inverse probability" weights are highly variable. Stat Sci. 2007;22(4):544-559.
    • (2007) Stat Sci. , vol.22 , Issue.4 , pp. 544-559
    • Robins, J.1    Sued, M.2    Lei-Gomez, Q.3
  • 31
    • 84965520932 scopus 로고
    • The CES-D Scale: A self-report depression scale for research in the general population
    • Radloff LS. The CES-D Scale: a self-report depression scale for research in the general population. Appl Psychol Meas. 1977;1(3):385-401.
    • (1977) Appl Psychol Meas. , vol.1 , Issue.3 , pp. 385-401
    • Radloff, L.S.1
  • 32
    • 84872794089 scopus 로고    scopus 로고
    • TMLE: An R package for targeted maximum likelihood estimation
    • Gruber S, van der Laan MJ. TMLE: an R package for targeted maximum likelihood estimation. J Stat Softw. 2012;51(13):1-35.
    • (2012) J Stat Softw , vol.51 , Issue.13 , pp. 1-35
    • Gruber, S.1    Van Der Laan, M.J.2
  • 34
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Mach Learn. 2001;45(1):5-32.
    • (2001) Mach Learn , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 37
    • 0037186537 scopus 로고    scopus 로고
    • Looking for lumps: Boosting and bagging for density estimation
    • Ridgeway G. Looking for lumps: boosting and bagging for density estimation. Comput Stat Data Anal. 2002;38(4):379-392.
    • (2002) Comput Stat Data Anal , vol.38 , Issue.4 , pp. 379-392
    • Ridgeway, G.1
  • 38
    • 84947318637 scopus 로고
    • Locally weighted regression: An approach to regression analysis by local fitting
    • Cleveland WS, Devlin SJ. Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc. 1988;83(403):596-610.
    • (1988) J Am Stat Assoc. , vol.83 , Issue.403 , pp. 596-610
    • Cleveland, W.S.1    Devlin, S.J.2
  • 39
    • 84874773224 scopus 로고    scopus 로고
    • Mortality risk score prediction in an elderly population using machine learning
    • Rose S. Mortality risk score prediction in an elderly population using machine learning. Am J Epidemiol. 2013;177(5):443-452.
    • (2013) Am J Epidemiol. , vol.177 , Issue.5 , pp. 443-452
    • Rose, S.1
  • 40
    • 84989888849 scopus 로고    scopus 로고
    • Evaluating treatment effectiveness under model misspecification: A comparison of targeted maximum likelihood estimation with bias-corrected matching
    • Kreif N, Gruber S, Radice R, et al. Evaluating treatment effectiveness under model misspecification: a comparison of targeted maximum likelihood estimation with bias-corrected matching. Stat Methods Med Res. 2016;25(5):2315-2336.
    • (2016) Stat Methods Med Res. , vol.25 , Issue.5 , pp. 2315-2336
    • Kreif, N.1    Gruber, S.2    Radice, R.3
  • 41
    • 84925282729 scopus 로고    scopus 로고
    • Improving propensity score estimators' robustness to model misspecification using Super Learner
    • Pirracchio R, Petersen ML, van der Laan M. Improving propensity score estimators' robustness to model misspecification using Super Learner. Am J Epidemiol. 2015;181(2):108-119.
    • (2015) Am J Epidemiol. , vol.181 , Issue.2 , pp. 108-119
    • Pirracchio, R.1    Petersen, M.L.2    Van Der Laan, M.3
  • 42
    • 26644446561 scopus 로고    scopus 로고
    • Asymptotics of cross-validated risk estimation in estimator selection and performance assessment
    • Dudoit S, van der Laan MJ. Asymptotics of cross-validated risk estimation in estimator selection and performance assessment. Stat Methodol. 2005;2(2):131-154.
    • (2005) Stat Methodol. , vol.2 , Issue.2 , pp. 131-154
    • Dudoit, S.1    Van Der Laan, M.J.2
  • 44
    • 77953607621 scopus 로고    scopus 로고
    • Propensity score estimation: Neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression
    • Westreich D, Lessler J, Funk MJ. Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression. J Clin Epidemiol. 2010;63(8):826-833.
    • (2010) J Clin Epidemiol. , vol.63 , Issue.8 , pp. 826-833
    • Westreich, D.1    Lessler, J.2    Funk, M.J.3
  • 45
    • 84938745451 scopus 로고    scopus 로고
    • Package version 2.0-15 Published July 16, Accessed July 1, 2015
    • Polley EC, van der Laan MJ. SuperLearner: Super Learner Prediction. (Package version 2.0-15). http://cran.rproject.org/web/packages/SuperLearner/index.html. Published July 16, 2014. Accessed July 1, 2015.
    • (2014) SuperLearner: Super Learner Prediction
    • Polley, E.C.1    Van Der Laan, M.J.2
  • 46
    • 10844272375 scopus 로고    scopus 로고
    • On principles for modeling propensity scores in medical research
    • Rubin DB. On principles for modeling propensity scores in medical research. Pharmacoepidem Drug Saf. 2004;13(12):855-857.
    • (2004) Pharmacoepidem Drug Saf , vol.13 , Issue.12 , pp. 855-857
    • Rubin, D.B.1
  • 47
    • 84880306368 scopus 로고    scopus 로고
    • A tutorial on propensity score estimation for multiple treatments using generalized boosted models
    • McCaffrey DF, Griffin BA, Almirall D, et al. A tutorial on propensity score estimation for multiple treatments using generalized boosted models. Stat Med. 2013;32(19):3388-3414.
    • (2013) Stat Med. , vol.32 , Issue.19 , pp. 3388-3414
    • McCaffrey, D.F.1    Griffin, B.A.2    Almirall, D.3
  • 48
    • 10844272276 scopus 로고    scopus 로고
    • Propensity score estimation with boosted regression for evaluating causal effects in observational studies
    • McCaffrey DF, Ridgeway G, Morral AR. Propensity score estimation with boosted regression for evaluating causal effects in observational studies. Psychol Methods. 2004;9(4):403-425.
    • (2004) Psychol Methods , vol.9 , Issue.4 , pp. 403-425
    • McCaffrey, D.F.1    Ridgeway, G.2    Morral, A.R.3
  • 49
    • 79953304087 scopus 로고    scopus 로고
    • Weight trimming and propensity score weighting
    • Lee BK, Lessler J, Stuart EA. Weight trimming and propensity score weighting. PLoS One. 2011;6(3):e18174.
    • (2011) PLoS One , vol.6 , Issue.3 , pp. e18174
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 50
    • 46349084991 scopus 로고    scopus 로고
    • Evaluating uses of data mining techniques in propensity score estimation: A simulation study
    • Setoguchi S, Schneeweiss S, Brookhart MA, et al. Evaluating uses of data mining techniques in propensity score estimation: a simulation study. Pharmacoepidem Drug Saf. 2008;17(6):546-555.
    • (2008) Pharmacoepidem Drug Saf , vol.17 , Issue.6 , pp. 546-555
    • Setoguchi, S.1    Schneeweiss, S.2    Brookhart, M.A.3
  • 51
    • 79958720789 scopus 로고    scopus 로고
    • Challenges with propensity score strategies in a high-dimensional setting and a potential alternative
    • Hill J, Weiss C, Zhai F. Challenges with propensity score strategies in a high-dimensional setting and a potential alternative. Multivariate Behav Res. 2011;46(3):477-513.
    • (2011) Multivariate Behav Res. , vol.46 , Issue.3 , pp. 477-513
    • Hill, J.1    Weiss, C.2    Zhai, F.3
  • 52
    • 28444464482 scopus 로고    scopus 로고
    • Propensity scores: An introduction and experimental test
    • Luellen JK, Shadish WR, Clark MH. Propensity scores: an introduction and experimental test. Eval Rev. 2005;29(6):530-558.
    • (2005) Eval Rev. , vol.29 , Issue.6 , pp. 530-558
    • Luellen, J.K.1    Shadish, W.R.2    Clark, M.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.