메뉴 건너뛰기




Volumn 14, Issue 3, 2019, Pages 161-169

Statistical modeling and aggregate-weighted scoring systems in prediction of mortality and ICU transfer: A systematic review

Author keywords

[No Author keywords available]

Indexed keywords

ADULT; BODY WEIGHT; CINAHL; CONTROLLED STUDY; DEATH; DETERIORATION; DIAGNOSTIC TEST ACCURACY STUDY; FEMALE; GENERAL HOSPITAL; HUMAN; INTENSIVE CARE UNIT; MACHINE LEARNING; MALE; MEDLINE; MORTALITY; PRACTICE GUIDELINE; PREDICTION; PREDICTIVE VALUE; PROBABILITY; REMISSION; REVIEW; RISK ASSESSMENT; SCORING SYSTEM; SIMULATION; SYSTEMATIC REVIEW; WORKLOAD; HEALTH CARE FACILITY; PATIENT TRANSPORT; STATISTICAL MODEL;

EID: 85062397823     PISSN: 15535592     EISSN: 15535606     Source Type: Journal    
DOI: 10.12788/jhm.3151     Document Type: Review
Times cited : (38)

References (53)
  • 2
    • 79551536463 scopus 로고    scopus 로고
    • Unplanned transfers to a medical intensive care unit: Causes and relationship to preventable errors in care
    • Bapoje SR, Gaudiani JL, Narayanan V, Albert RK. Unplanned transfers to a medical intensive care unit: causes and relationship to preventable errors in care. J Hosp Med. 2011;6(2):68-72. doi: 10.1002/jhm.812.
    • (2011) J Hosp Med. , vol.6 , Issue.2 , pp. 68-72
    • Bapoje, S.R.1    Gaudiani, J.L.2    Narayanan, V.3    Albert, R.K.4
  • 3
    • 84903614329 scopus 로고    scopus 로고
    • Hospital deaths in patients with sepsis from 2 independent cohorts
    • Liu V, Escobar GJ, Greene JD, et al. Hospital deaths in patients with sepsis from 2 independent cohorts. JAMA. 2014;312(1):90-92. doi: 10.1001/jama.2014.5804.
    • (2014) JAMA. , vol.312 , Issue.1 , pp. 90-92
    • Liu, V.1    Escobar, G.J.2    Greene, J.D.3
  • 4
    • 34247400784 scopus 로고    scopus 로고
    • Rapid response systems: A systematic review
    • Winters BD, Pham JC, Hunt EA, et al. Rapid response systems: a systematic review. Crit Care Med. 2007;35(5):1238-1243. doi: 10.1097/01. CCM.0000262388.85669.68.
    • (2007) Crit Care Med. , vol.35 , Issue.5 , pp. 1238-1243
    • Winters, B.D.1    Pham, J.C.2    Hunt, E.A.3
  • 5
    • 84901621128 scopus 로고    scopus 로고
    • Andrews RM (AHRQ). National inpatient hospital costs: The most expensive conditions by payer, 2011
    • Agency for Healthcare Research and Quality, Rockville, MD. Agency for Healthcare Research and Quality, Accessed July 10, 2018
    • Torio C. Andrews RM (AHRQ). National inpatient hospital costs: the most expensive conditions by payer, 2011. HCUP Statistical Brief# 160. August 2013. Agency for Healthcare Research and Quality, Rockville, MD. Agency for Healthcare Research and Quality. 2015. http://www.ncbi.nlm.nih.gov/books/NBK169005/. Accessed July 10, 2018.
    • (2015) HCUP Statistical Brief# 160. August 2013.
    • Torio, C.1
  • 7
    • 42949112754 scopus 로고    scopus 로고
    • Outreach and Early Warning Systems (EWS) for the prevention of intensive care admission and death of critically ill adult patients on general hospital wards
    • McGaughey J, Alderdice F, Fowler R, et al. Outreach and Early Warning Systems (EWS) for the prevention of intensive care admission and death of critically ill adult patients on general hospital wards. Cochrane Database Syst Rev. 2007;3(3):CD005529:Cd005529. doi: 10.1002/14651858.CD005529.pub2.
    • (2007) Cochrane Database Syst Rev. , vol.3 , Issue.3
    • McGaughey, J.1    Alderdice, F.2    Fowler, R.3
  • 8
    • 0002681937 scopus 로고    scopus 로고
    • An early warning score for the early detection of patients with impending illness
    • Morgan R, Williams F, Wright M. An early warning score for the early detection of patients with impending illness. Clin Intensive Care. 1997;8:100.
    • (1997) Clin Intensive Care. , vol.8 , pp. 100
    • Morgan, R.1    Williams, F.2    Wright, M.3
  • 9
    • 84994181151 scopus 로고    scopus 로고
    • Early detection, prevention, and mitigation of critical illness outside intensive care settings
    • Escobar GJ, Dellinger RP. Early detection, prevention, and mitigation of critical illness outside intensive care settings. J Hosp Med. 2016;11(1):S5-S10. doi: 10.1002/jhm.2653.
    • (2016) J Hosp Med. , vol.11 , Issue.1 , pp. S5-S10
    • Escobar, G.J.1    Dellinger, R.P.2
  • 10
    • 84944319129 scopus 로고    scopus 로고
    • Nonelective rehospitalizations and postdischarge mortality: Predictive models suitable for use in real time
    • Escobar GJ, Ragins A, Scheirer P, et al. Nonelective rehospitalizations and postdischarge mortality: predictive models suitable for use in real time. Med Care. 2015;53(11):916-923. doi: 10.1097/MLR.0000000000000435.
    • (2015) Med Care. , vol.53 , Issue.11 , pp. 916-923
    • Escobar, G.J.1    Ragins, A.2    Scheirer, P.3
  • 11
    • 85063536900 scopus 로고    scopus 로고
    • Toward the “plateau of productivity”: Enhancing the value of machine learning in critical care
    • Liu VX. Toward the “plateau of productivity”: enhancing the value of machine learning in critical care. Crit Care Med. 2018;46(7):1196-1197. doi:10.1097/CCM.0000000000003170.
    • (2018) Crit Care Med. , vol.46 , Issue.7 , pp. 1196-1197
    • Liu, V.X.1
  • 12
    • 0034781186 scopus 로고    scopus 로고
    • Validation of a modified Early Warning Score in medical admissions
    • Subbe CP, Kruger M, Rutherford P, Gemmel L. Validation of a modified Early Warning Score in medical admissions. QJM. 2001;94(10):521-526. doi:10.1093/qjmed/94.10.521.
    • (2001) QJM. , vol.94 , Issue.10 , pp. 521-526
    • Subbe, C.P.1    Kruger, M.2    Rutherford, P.3    Gemmel, L.4
  • 13
    • 84875239334 scopus 로고    scopus 로고
    • The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death
    • Smith GB, Prytherch DR, Meredith P, Schmidt PE, Featherstone PI. The ability of the National Early Warning Score (NEWS) to discriminate patients at risk of early cardiac arrest, unanticipated intensive care unit admission, and death. Resuscitation. 2013;84(4):465-470. doi: 10.1016/j.resuscitation.2012.12.016.
    • (2013) Resuscitation. , vol.84 , Issue.4 , pp. 465-470
    • Smith, G.B.1    Prytherch, D.R.2    Meredith, P.3    Schmidt, P.E.4    Featherstone, P.I.5
  • 14
    • 84988703622 scopus 로고    scopus 로고
    • Development and validation of an electronic medical record-based alert score for detection of inpatient deterioration outside the ICU
    • Kipnis P, Turk BJ, Wulf DA, et al. Development and validation of an electronic medical record-based alert score for detection of inpatient deterioration outside the ICU. J Biomed Inform. 2016;64:10-19. doi: 10.1016/j.jbi.2016.09.013.
    • (2016) J Biomed Inform. , vol.64 , pp. 10-19
    • Kipnis, P.1    Turk, B.J.2    Wulf, D.A.3
  • 15
    • 84895918244 scopus 로고    scopus 로고
    • Widely used track and trigger scores: Are they ready for automation in practice?
    • Romero-Brufau S, Huddleston JM, Naessens JM, et al. Widely used track and trigger scores: are they ready for automation in practice? Resuscitation. 2014;85(4):549-552. doi: 10.1016/j.resuscitation.2013.12.017.
    • (2014) Resuscitation. , vol.85 , Issue.4 , pp. 549-552
    • Romero-Brufau, S.1    Huddleston, J.M.2    Naessens, J.M.3
  • 16
    • 84905990877 scopus 로고    scopus 로고
    • Big data in health care: Using analytics to identify and manage high-risk and high-cost patients
    • Bates DW, Saria S, Ohno-Machado L, Shah A, Escobar G. Big data in health care: using analytics to identify and manage high-risk and high-cost patients. Health Aff (Millwood). 2014;33(7):1123-1131. doi: 10.1377/hlthaff.2014.0041.
    • (2014) Health Aff (Millwood). , vol.33 , Issue.7 , pp. 1123-1131
    • Bates, D.W.1    Saria, S.2    Ohno-Machado, L.3    Shah, A.4    Escobar, G.5
  • 17
    • 84896630259 scopus 로고    scopus 로고
    • Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards
    • Churpek MM, Yuen TC, Park SY, Gibbons R, Edelson DP. Using electronic health record data to develop and validate a prediction model for adverse outcomes in the wards. Crit Care Med. 2014;42(4):841-848. doi: 10.1097/CCM.0000000000000038.
    • (2014) Crit Care Med. , vol.42 , Issue.4 , pp. 841-848
    • Churpek, M.M.1    Yuen, T.C.2    Park, S.Y.3    Gibbons, R.4    Edelson, D.P.5
  • 18
    • 84954349720 scopus 로고    scopus 로고
    • Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
    • Churpek MM, Yuen TC, Winslow C, et al. Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med. 2016;44(2):368-374. doi: 10.1097/CCM.0000000000001571.
    • (2016) Crit Care Med. , vol.44 , Issue.2 , pp. 368-374
    • Churpek, M.M.1    Yuen, T.C.2    Winslow, C.3
  • 19
    • 84861960489 scopus 로고    scopus 로고
    • Early detection of impending physiologic deterioration among patients who are not in intensive care: Development of predictive models using data from an automated electronic medical record
    • Escobar GJ, LaGuardia JC, Turk BJ, et al. Early detection of impending physiologic deterioration among patients who are not in intensive care: development of predictive models using data from an automated electronic medical record. J Hosp Med. 2012;7(5):388-395. doi: 10.1002/jhm.1929.
    • (2012) J Hosp Med. , vol.7 , Issue.5 , pp. 388-395
    • Escobar, G.J.1    LaGuardia, J.C.2    Turk, B.J.3
  • 20
    • 0027457620 scopus 로고
    • Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine
    • Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin Chem. 1993;39(4):561-577.
    • (1993) Clin Chem. , vol.39 , Issue.4 , pp. 561-577
    • Zweig, M.H.1    Campbell, G.2
  • 21
    • 84924036082 scopus 로고    scopus 로고
    • Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement
    • Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMC Med. 2015;13(1):1. doi: 10.1186/s12916-014-0241-z.
    • (2015) BMC Med. , vol.13 , Issue.1 , pp. 1
    • Collins, G.S.1    Reitsma, J.B.2    Altman, D.G.3    Moons, K.G.4
  • 22
    • 68049122102 scopus 로고    scopus 로고
    • Preferred reporting items for systematic reviews and meta-analyses: The Prisma statement
    • Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the Prisma statement. PLOS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
    • (2009) PLOS Med. , vol.6 , Issue.7 , pp. e1000097
    • Moher, D.1    Liberati, A.2    Tetzlaff, J.3    Altman, D.G.4
  • 23
    • 77956510600 scopus 로고    scopus 로고
    • Cochrane handbook for systematic reviews of interventions version 5.1. 0
    • Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions version 5.1. 0. The Cochrane Collaboration. 2011;5.
    • (2011) The Cochrane Collaboration. , pp. 5
    • Higgins, J.P.1    Green, S.2
  • 25
    • 84970846412 scopus 로고
    • Statistics Notes: Diagnostic tests 2: Predictive values
    • Altman DG, Bland JM. Statistics Notes: Diagnostic tests 2: predictive values. BMJ. 1994;309(6947):102. doi: 10.1136/bmj.309.6947.102.
    • (1994) BMJ. , vol.309 , Issue.6947 , pp. 102
    • Altman, D.G.1    Bland, J.M.2
  • 26
    • 79551514009 scopus 로고    scopus 로고
    • Standardizing predictive values in diagnostic imaging research
    • author reply 506-507
    • Heston TF. Standardizing predictive values in diagnostic imaging research. J Magn Reson Imaging. 2011;33(2):505; author reply 506-507. doi: 10.1002/jmri.22466.
    • (2011) J Magn Reson Imaging. , vol.33 , Issue.2 , pp. 505
    • Heston, T.F.1
  • 27
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29-36. doi:10.1148/radiology.143.1.7063747.
    • (1982) Radiology. , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 28
    • 11344274987 scopus 로고    scopus 로고
    • Statistics review 13: Receiver operating characteristic curves
    • Bewick V, Cheek L, Ball J. Statistics review 13: receiver operating characteristic curves. Crit Care. 2004;8(6):508-512. doi: 10.1186/cc3000.
    • (2004) Crit Care. , vol.8 , Issue.6 , pp. 508-512
    • Bewick, V.1    Cheek, L.2    Ball, J.3
  • 29
    • 84874226740 scopus 로고    scopus 로고
    • Predicting out of intensive care unit cardiopulmonary arrest or death using electronic medical record data
    • Alvarez CA, Clark CA, Zhang S, et al. Predicting out of intensive care unit cardiopulmonary arrest or death using electronic medical record data. BMC Med Inform Decis Mak. 2013;13:28. doi: 10.1186/1472-6947-13-28.
    • (2013) BMC Med Inform Decis Mak. , vol.13 , pp. 28
    • Alvarez, C.A.1    Clark, C.A.2    Zhang, S.3
  • 30
    • 85034647934 scopus 로고    scopus 로고
    • Comparison of the between the FLAGS calling criteria to the MEWS, NEWS and the electronic Cardiac Arrest Risk Triage (eCART) score for the identification of deteriorating ward patients
    • Green M, Lander H, Snyder A, et al. Comparison of the between the FLAGS calling criteria to the MEWS, NEWS and the electronic Cardiac Arrest Risk Triage (eCART) score for the identification of deteriorating ward patients. Resuscitation. 2018;123:86-91. doi: 10.1016/j.resuscitation.2017.10.028.
    • (2018) Resuscitation. , vol.123 , pp. 86-91
    • Green, M.1    Lander, H.2    Snyder, A.3
  • 31
    • 84879091612 scopus 로고    scopus 로고
    • Shock index and early recognition of sepsis in the emergency department: Pilot study
    • Berger T, Green J, Horeczko T, et al. Shock index and early recognition of sepsis in the emergency department: pilot study. West J Emerg Med. 2013;14(2):168-174. doi: 10.5811/westjem.2012.8.11546.
    • (2013) West J Emerg Med. , vol.14 , Issue.2 , pp. 168-174
    • Berger, T.1    Green, J.2    Horeczko, T.3
  • 32
    • 84859001212 scopus 로고    scopus 로고
    • The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials
    • Higgins JPT, Altman DG, Gøtzsche PC, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:d5928-d5928. doi: 10.1136/bmj.d5928.
    • (2011) BMJ. , vol.343 , pp. d5928-d5928
    • Higgins, J.P.T.1    Altman, D.G.2    Gøtzsche, P.C.3
  • 33
    • 38449083305 scopus 로고    scopus 로고
    • Physiological risk factors, early warning scoring systems and organizational changes
    • Johnstone CC, Rattray J, Myers L. Physiological risk factors, early warning scoring systems and organizational changes. Nurs Crit Care. 2007;12(5):219-224. doi: 10.1111/j.1478-5153.2007.00238.x.
    • (2007) Nurs Crit Care. , vol.12 , Issue.5 , pp. 219-224
    • Johnstone, C.C.1    Rattray, J.2    Myers, L.3
  • 34
    • 84887217401 scopus 로고    scopus 로고
    • Do either early warning systems or emergency response teams improve hospital patient survival? A systematic review
    • McNeill G, Bryden D. Do either early warning systems or emergency response teams improve hospital patient survival? A systematic review. Resuscitation. 2013;84(12):1652-1667. doi: 10.1016/j.resuscitation.2013.08.006.
    • (2013) Resuscitation. , vol.84 , Issue.12 , pp. 1652-1667
    • McNeill, G.1    Bryden, D.2
  • 36
    • 84914676360 scopus 로고    scopus 로고
    • Early warning system scores for clinical deterioration in hospitalized patients: A systematic review
    • Smith ME, Chiovaro JC, O’Neil M, et al. Early warning system scores for clinical deterioration in hospitalized patients: a systematic review. Ann Am Thorac Soc. 2014;11(9):1454-1465. doi: 10.1513/AnnalsATS.201403-102OC.
    • (2014) Ann Am Thorac Soc. , vol.11 , Issue.9 , pp. 1454-1465
    • Smith, M.E.1    Chiovaro, J.C.2    O’Neil, M.3
  • 37
    • 22944463335 scopus 로고    scopus 로고
    • Does earlier detection of critically ill patients on surgical wards lead to better outcomes?
    • Subbe CP, Williams E, Fligelstone L, Gemmell L. Does earlier detection of critically ill patients on surgical wards lead to better outcomes? Ann R Coll Surg Engl. 2005;87(4):226-232. doi: 10.1308/003588405X50921.
    • (2005) Ann R Coll Surg Engl. , vol.87 , Issue.4 , pp. 226-232
    • Subbe, C.P.1    Williams, E.2    Fligelstone, L.3    Gemmell, L.4
  • 38
    • 84859544287 scopus 로고    scopus 로고
    • Eliminating waste in us health care
    • Berwick DM, Hackbarth AD. Eliminating waste in us health care. JAMA. 2012;307(14):1513-1516. doi: 10.1001/jama.2012.362.
    • (2012) JAMA. , vol.307 , Issue.14 , pp. 1513-1516
    • Berwick, D.M.1    Hackbarth, A.D.2
  • 39
    • 84943162109 scopus 로고    scopus 로고
    • The Quadruple Aim: Care, health, cost and meaning in work
    • Sikka R, Morath JM, Leape L. The Quadruple Aim: care, health, cost and meaning in work.. BMJ Quality & Safety. 2015;24(10):608-610. doi: 10.1136/bmjqs-2015-004160.
    • (2015) BMJ Quality & Safety. , vol.24 , Issue.10 , pp. 608-610
    • Sikka, R.1    Morath, J.M.2    Leape, L.3
  • 41
    • 84947052918 scopus 로고    scopus 로고
    • Alarm fatigue: Impacts on patient safety
    • Ruskin KJ, Hueske-Kraus D. Alarm fatigue: impacts on patient safety. Curr Opin Anaesthesiol. 2015;28(6):685-690. doi: 10.1097/ACO.0000000000000260.
    • (2015) Curr Opin Anaesthesiol. , vol.28 , Issue.6 , pp. 685-690
    • Ruskin, K.J.1    Hueske-Kraus, D.2
  • 42
    • 85058893400 scopus 로고    scopus 로고
    • Minimal impact of implemented early warning score and best practice alert for patient deterioration
    • Bedoya AD, Clement ME, Phelan M, et al. Minimal impact of implemented early warning score and best practice alert for patient deterioration. Crit Care Med. 2019;47(1):49-55. doi: 10.1097/CCM.0000000000003439.
    • (2019) Crit Care Med. , vol.47 , Issue.1 , pp. 49-55
    • Bedoya, A.D.1    Clement, M.E.2    Phelan, M.3
  • 43
    • 84904247143 scopus 로고    scopus 로고
    • Nurses and physicians in a medical admission unit can accurately predict mortality of acutely admitted patients: A prospective cohort study
    • Brabrand M, Hallas J, Knudsen T. Nurses and physicians in a medical admission unit can accurately predict mortality of acutely admitted patients: A prospective cohort study. PLoS One. 2014;9(7):e101739. doi: 10.1371/journal. pone.0101739.
    • (2014) PLoS One. , vol.9 , Issue.7 , pp. e101739
    • Brabrand, M.1    Hallas, J.2    Knudsen, T.3
  • 44
    • 84875892068 scopus 로고    scopus 로고
    • Human cognition and the dynamics of failure to rescue: The Lewis Blackman case
    • Acquaviva K, Haskell H, Johnson J. Human cognition and the dynamics of failure to rescue: the Lewis Blackman case. J Prof Nurs. 2013;29(2):95-101. doi: 10.1016/j.profnurs.2012.12.009.
    • (2013) J Prof Nurs. , vol.29 , Issue.2 , pp. 95-101
    • Acquaviva, K.1    Haskell, H.2    Johnson, J.3
  • 45
    • 85001018562 scopus 로고    scopus 로고
    • Inattentional blindness and failures to rescue the deteriorating patient in critical care, emergency and perioperative settings: Four case scenarios
    • Jones A, Johnstone MJ. Inattentional blindness and failures to rescue the deteriorating patient in critical care, emergency and perioperative settings:four case scenarios. Aust Crit Care. 2017;30(4):219-223. doi: 10.1016/j. aucc.2016.09.005.
    • (2017) Aust Crit Care. , vol.30 , Issue.4 , pp. 219-223
    • Jones, A.1    Johnstone, M.J.2
  • 46
    • 0029319485 scopus 로고
    • Understanding adverse events: Human factors
    • Reason J. Understanding adverse events: human factors. Qual Health Care. 1995;4(2):80-89. doi: 10.1136/qshc.4.2.80.
    • (1995) Qual Health Care. , vol.4 , Issue.2 , pp. 80-89
    • Reason, J.1
  • 48
    • 85027869169 scopus 로고    scopus 로고
    • Unintended consequences of machine learning in medicine
    • Cabitza F, Rasoini R, Gensini GF. Unintended consequences of machine learning in medicine. JAMA. 2017;318(6):517-518. doi: 10.1001/jama.2017.7797.
    • (2017) JAMA. , vol.318 , Issue.6 , pp. 517-518
    • Cabitza, F.1    Rasoini, R.2    Gensini, G.F.3
  • 49
    • 85053003464 scopus 로고    scopus 로고
    • Clinical implications and challenges of artificial intelligence and deep learning
    • Stead WW. Clinical implications and challenges of artificial intelligence and deep learning. JAMA. 2018;320(11):1107-1108. doi: 10.1001/jama.2018.11029.
    • (2018) JAMA. , vol.320 , Issue.11 , pp. 1107-1108
    • Stead, W.W.1
  • 50
    • 85007597269 scopus 로고    scopus 로고
    • Artificial intelligence with deep learning technology looks into diabetic retinopathy screening
    • Wong TY, Bressler NM. Artificial intelligence with deep learning technology looks into diabetic retinopathy screening. JAMA. 2016;316(22):2366-2367. doi: 10.1001/jama.2016.17563.
    • (2016) JAMA. , vol.316 , Issue.22 , pp. 2366-2367
    • Wong, T.Y.1    Bressler, N.M.2
  • 51
    • 84893812665 scopus 로고    scopus 로고
    • Measuring the modified early warning score and the Rothman index: Advantages of utilizing the electronic medical record in an early warning system
    • Finlay GD, Rothman MJ, Smith RA. Measuring the modified early warning score and the Rothman index: advantages of utilizing the electronic medical record in an early warning system. J Hosp Med. 2014;9(2):116-119. doi: 10.1002/jhm.2132.
    • (2014) J Hosp Med. , vol.9 , Issue.2 , pp. 116-119
    • Finlay, G.D.1    Rothman, M.J.2    Smith, R.A.3
  • 52
    • 84864335228 scopus 로고    scopus 로고
    • Investigating clinical heterogeneity in systematic reviews: A methodologic review of guidance in the literature
    • Gagnier JJ, Moher D, Boon H, Beyene J, Bombardier C. Investigating clinical heterogeneity in systematic reviews: a methodologic review of guidance in the literature. BMC Med Res Methodol. 2012;12:111-111. doi: 10.1186/1471-2288-12-111.
    • (2012) BMC Med Res Methodol. , vol.12 , pp. 111
    • Gagnier, J.J.1    Moher, D.2    Boon, H.3    Beyene, J.4    Bombardier, C.5
  • 53
    • 84903786703 scopus 로고    scopus 로고
    • A randomized trial of real-time automated clinical deterioration alerts sent to a rapid response team
    • Kollef MH, Chen Y, Heard K, et al. A randomized trial of real-time automated clinical deterioration alerts sent to a rapid response team. J Hosp Med. 2014;9(7):424-429. doi: 10.1002/jhm.2193.
    • (2014) J Hosp Med. , vol.9 , Issue.7 , pp. 424-429
    • Kollef, M.H.1    Chen, Y.2    Heard, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.