-
1
-
-
84942259926
-
-
Technical Report Rockville, Agency for Healthcare Research and Quality, 2014
-
Barrett M, Smith M, Elixhauser A, et al: Utilization of Intensive Care Services, 2011. Technical Report #185. Rockville, Agency for Healthcare Research and Quality, 2014
-
(2011)
Utilization of Intensive Care Services
-
-
Barrett, M.1
Smith, M.2
Elixhauser, A.3
-
2
-
-
84922549250
-
Exploring the scope of post-intensive care syndrome therapy and care: Engagement of non-critical care providers and survivors in a second stakeholders meeting
-
Elliott D, Davidson JE, Harvey MA, et al: Exploring the scope of post-intensive care syndrome therapy and care: Engagement of non-critical care providers and survivors in a second stakeholders meeting. Crit Care Med 2014; 42:2518-2526
-
(2014)
Crit Care Med
, vol.42
, pp. 2518-2526
-
-
Elliott, D.1
Davidson, J.E.2
Harvey, M.A.3
-
3
-
-
84886301267
-
Mortality among patients admitted to strained intensive care units
-
Gabler NB, Ratcliffe SJ, Wagner J, et al: Mortality among patients admitted to strained intensive care units. Am J Respir Crit Care Med 2013; 188:800-806
-
(2013)
Am J Respir Crit Care Med
, vol.188
, pp. 800-806
-
-
Gabler, N.B.1
Ratcliffe, S.J.2
Wagner, J.3
-
4
-
-
84884825469
-
Outcomes among patients discharged from busy intensive care units
-
Wagner J, Gabler NB, Ratcliffe SJ, et al: Outcomes among patients discharged from busy intensive care units. Ann Intern Med 2013; 159:447-455
-
(2013)
Ann Intern Med
, vol.159
, pp. 447-455
-
-
Wagner, J.1
Gabler, N.B.2
Ratcliffe, S.J.3
-
5
-
-
84947037730
-
Intensive care unit capacity strain and adherence to prophylaxis guidelines
-
Weissman GE, Gabler NB, Brown SE, et al: Intensive care unit capacity strain and adherence to prophylaxis guidelines. J Crit Care 2015; 30:1303-1309
-
(2015)
J Crit Care
, vol.30
, pp. 1303-1309
-
-
Weissman, G.E.1
Gabler, N.B.2
Brown, S.E.3
-
6
-
-
84930714940
-
Variability among US intensive care units in managing the care of patients admitted with preexisting limits on life-sustaining therapies
-
Hart JL, Harhay MO, Gabler NB, et al: Variability among US intensive care units in managing the care of patients admitted with preexisting limits on life-sustaining therapies. JAMA Intern Med 2015; 175:1019-1026
-
(2015)
JAMA Intern Med
, vol.175
, pp. 1019-1026
-
-
Hart, J.L.1
Harhay, M.O.2
Gabler, N.B.3
-
7
-
-
84960958985
-
Are elderly patients' opinions sought before admission to an intensive care unit? Results of the ICE-CUB study
-
Le Guen J, Boumendil A, Guidet B, et al: Are elderly patients' opinions sought before admission to an intensive care unit? Results of the ICE-CUB study. Age Ageing 2016; 45:303-309
-
(2016)
Age Ageing
, vol.45
, pp. 303-309
-
-
Le Guen, J.1
Boumendil, A.2
Guidet, B.3
-
8
-
-
0034064308
-
Decision-making and outcomes of prolonged ICU stays in seriously ill patients
-
Teno JM, Fisher E, Hamel MB, et al: Decision-making and outcomes of prolonged ICU stays in seriously ill patients. J Am Geriatr Soc 2000; 48:S70-S74
-
(2000)
J Am Geriatr Soc
, vol.48
, pp. S70-S74
-
-
Teno, J.M.1
Fisher, E.2
Hamel, M.B.3
-
9
-
-
33646592518
-
Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients
-
Zimmerman JE, Kramer AA, McNair DS, et al: Acute Physiology and Chronic Health Evaluation (APACHE) IV: Hospital mortality assessment for today's critically ill patients. Crit Care Med 2006; 34:1297-1310
-
(2006)
Crit Care Med
, vol.34
, pp. 1297-1310
-
-
Zimmerman, J.E.1
Kramer, A.A.2
McNair, D.S.3
-
10
-
-
84897074160
-
Physical complications in acute lung injury survivors: A two-year longitudinal prospective study
-
Fan E, Dowdy DW, Colantuoni E, et al: Physical complications in acute lung injury survivors: A two-year longitudinal prospective study. Crit Care Med 2014; 42:849-859
-
(2014)
Crit Care Med
, vol.42
, pp. 849-859
-
-
Fan, E.1
Dowdy, D.W.2
Colantuoni, E.3
-
11
-
-
39749153113
-
Forecasting daily patient volumes in the emergency department
-
Jones SS, Thomas A, Evans RS, et al: Forecasting daily patient volumes in the emergency department. Acad Emerg Med 2008; 15:159-170
-
(2008)
Acad Emerg Med
, vol.15
, pp. 159-170
-
-
Jones, S.S.1
Thomas, A.2
Evans, R.S.3
-
12
-
-
84898719486
-
Objective factors associated with physicians' and nurses' perceptions of intensive care unit capacity strain
-
Kerlin MP, Harhay MO, Vranas KC, et al: Objective factors associated with physicians' and nurses' perceptions of intensive care unit capacity strain. Ann Am Thorac Soc 2014; 11:167-172
-
(2014)
Ann Am Thorac Soc
, vol.11
, pp. 167-172
-
-
Kerlin, M.P.1
Harhay, M.O.2
Vranas, K.C.3
-
13
-
-
84960121489
-
ICU physicians are unable to accurately predict length of stay at admission: A prospective study
-
Nassar AP Jr, Caruso P: ICU physicians are unable to accurately predict length of stay at admission: A prospective study. Int J Qual Health Care 2016; 28:99-103
-
(2016)
Int J Qual Health Care
, vol.28
, pp. 99-103
-
-
Nassar, A.P.1
Caruso, P.2
-
14
-
-
2442458881
-
Clinician predictions of intensive care unit mortality
-
Rocker G, Cook D, Sjokvist P, et al; Level of Care Study Investigators; Canadian Critical Care Trials Group: Clinician predictions of intensive care unit mortality. Crit Care Med 2004; 32:1149-1154
-
(2004)
Crit Care Med
, vol.32
, pp. 1149-1154
-
-
Rocker, G.1
Cook, D.2
Sjokvist, P.3
-
15
-
-
79952192983
-
Power and limitations of daily prognostications of death in the medical intensive care unit
-
Meadow W, Pohlman A, Frain L, et al: Power and limitations of daily prognostications of death in the medical intensive care unit. Crit Care Med 2011; 39:474-479
-
(2011)
Crit Care Med
, vol.39
, pp. 474-479
-
-
Meadow, W.1
Pohlman, A.2
Frain, L.3
-
16
-
-
33644590528
-
Mortality predictions in the intensive care unit: Comparing physicians with scoring systems
-
Sinuff T, Adhikari NK, Cook DJ, et al: Mortality predictions in the intensive care unit: Comparing physicians with scoring systems. Crit Care Med 2006; 34:878-885
-
(2006)
Crit Care Med
, vol.34
, pp. 878-885
-
-
Sinuff, T.1
Adhikari, N.K.2
Cook, D.J.3
-
17
-
-
85020386679
-
Discriminative Accuracy of physician and nurse predictions for survival and functional outcomes 6 months after an ICU admission
-
Detsky ME, Harhay MO, Bayard DF, et al: Discriminative Accuracy of physician and nurse predictions for survival and functional outcomes 6 months after an ICU admission. JAMA 2017; 317:2187-2195
-
(2017)
JAMA
, vol.317
, pp. 2187-2195
-
-
Detsky, M.E.1
Harhay, M.O.2
Bayard, D.F.3
-
18
-
-
26444506063
-
SAPS 3-From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission
-
Moreno RP, Metnitz PG, Almeida E, et al; SAPS 3 Investigators: SAPS 3-From evaluation of the patient to evaluation of the intensive care unit. Part 2: Development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med 2005; 31:1345-1355
-
(2005)
Intensive Care Med
, vol.31
, pp. 1345-1355
-
-
Moreno, R.P.1
Metnitz, P.G.2
Almeida, E.3
-
19
-
-
33947137881
-
Assessing contemporary intensive care unit outcome: An updated Mortality Probability Admission Model (MPM0-III)
-
Higgins TL, Teres D, Copes WS, et al: Assessing contemporary intensive care unit outcome: An updated Mortality Probability Admission Model (MPM0-III). Crit Care Med 2007; 35:827-835
-
(2007)
Crit Care Med
, vol.35
, pp. 827-835
-
-
Higgins, T.L.1
Teres, D.2
Copes, W.S.3
-
20
-
-
84992110628
-
Which models can I use to predict adult ICU length of stay? A systematic review
-
Verburg IW, Atashi A, Eslami S, et al: Which models can I use to predict adult ICU length of stay? A systematic review. Crit Care Med 2017; 45:e222-e231
-
(2017)
Crit Care Med
, vol.45
, pp. e222-e231
-
-
Verburg, I.W.1
Atashi, A.2
Eslami, S.3
-
21
-
-
33748771981
-
Intensive care unit length of stay: Benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV
-
Zimmerman JE, Kramer AA, McNair DS, et al: Intensive care unit length of stay: Benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV. Crit Care Med 2006; 34:2517-2529
-
(2006)
Crit Care Med
, vol.34
, pp. 2517-2529
-
-
Zimmerman, J.E.1
Kramer, A.A.2
McNair, D.S.3
-
22
-
-
77952078490
-
A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay
-
Kramer AA, Zimmerman JE: A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay. BMC Med Inform Decis Mak 2010; 10:27
-
(2010)
BMC Med Inform Decis Mak
, vol.10
, pp. 27
-
-
Kramer, A.A.1
Zimmerman, J.E.2
-
23
-
-
85009736668
-
Are ICU length of stay predictions worthwhile?
-
Kramer AA: Are ICU length of stay predictions worthwhile? Crit Care Med 2017; 45:379-380
-
(2017)
Crit Care Med
, vol.45
, pp. 379-380
-
-
Kramer, A.A.1
-
24
-
-
84937618616
-
Hospital-level variation in ICU admission and critical care procedures for patients hospitalized for pulmonary embolism
-
Admon AJ, Seymour CW, Gershengorn HB, et al: Hospital-level variation in ICU admission and critical care procedures for patients hospitalized for pulmonary embolism. Chest 2014; 146:1452-1461
-
(2014)
Chest
, vol.146
, pp. 1452-1461
-
-
Admon, A.J.1
Seymour, C.W.2
Gershengorn, H.B.3
-
25
-
-
84906314135
-
Combining structured and unstructured data to identify a cohort of ICU patients who received dialysis
-
Abhyankar S, Demner-Fushman D, Callaghan FM, et al: Combining structured and unstructured data to identify a cohort of ICU patients who received dialysis. J Am Med Inform Assoc 2014; 21:801-807
-
(2014)
J Am Med Inform Assoc
, vol.21
, pp. 801-807
-
-
Abhyankar, S.1
Demner-Fushman, D.2
Callaghan, F.M.3
-
26
-
-
84989352335
-
Natural language processing to assess documentation of features of critical illness in discharge documents of acute respiratory distress syndrome survivors
-
Weissman GE, Harhay MO, Lugo RM, et al: Natural language processing to assess documentation of features of critical illness in discharge documents of acute respiratory distress syndrome survivors. Ann Am Thorac Soc 2016; 13:1538-1545
-
(2016)
Ann Am Thorac Soc
, vol.13
, pp. 1538-1545
-
-
Weissman, G.E.1
Harhay, M.O.2
Lugo, R.M.3
-
27
-
-
84995810431
-
Extracting information from the text of electronic medical records to improve case detection: A systematic review
-
Ford E, Carroll JA, Smith HE, et al: Extracting information from the text of electronic medical records to improve case detection: A systematic review. J Am Med Inform Assoc 2016; 23:1007-1015
-
(2016)
J Am Med Inform Assoc
, vol.23
, pp. 1007-1015
-
-
Ford, E.1
Carroll, J.A.2
Smith, H.E.3
-
28
-
-
85015193019
-
Hospital readmission and social risk factors identified from physician notes
-
Navathe AS, Zhong F, Lei VJ, et al: Hospital readmission and social risk factors identified from physician notes. Health Serv Res 2018; 53:1110-1136
-
(2018)
Health Serv Res
, vol.53
, pp. 1110-1136
-
-
Navathe, A.S.1
Zhong, F.2
Lei, V.J.3
-
29
-
-
84920273517
-
Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): A population-based study
-
Pirracchio R, Petersen ML, Carone M, et al: Mortality prediction in intensive care units with the Super ICU Learner Algorithm (SICULA): A population-based study. Lancet Respir Med 2015; 3:42-52
-
(2015)
Lancet Respir Med
, vol.3
, pp. 42-52
-
-
Pirracchio, R.1
Petersen, M.L.2
Carone, M.3
-
30
-
-
0027132478
-
A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multi-center study
-
Le Gall JR, Lemeshow S, Saulnier F: A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multi-center study. JAMA 1993; 270:2957-2963
-
(1993)
JAMA
, vol.270
, pp. 2957-2963
-
-
Le Gall, J.R.1
Lemeshow, S.2
Saulnier, F.3
-
31
-
-
84957068825
-
Neural network prediction of ICU length of stay following cardiac surgery based on pre-incision variables
-
LaFaro RJ, Pothula S, Kubal KP, et al: Neural network prediction of ICU length of stay following cardiac surgery based on pre-incision variables. PLoS One 2015; 10:e0145395
-
(2015)
PLoS One
, vol.10
-
-
LaFaro, R.J.1
Pothula, S.2
Kubal, K.P.3
-
32
-
-
84965124834
-
Length of hospital stay prediction at the admission stage for cardiology patients using artificial neural network
-
Tsai PFJ, Chen PC, Chen YY, et al: Length of hospital stay prediction at the admission stage for cardiology patients using artificial neural network. J Healthc Eng 2016; 2016
-
(2016)
J Healthc Eng
, vol.2016
-
-
Tsai, P.F.J.1
Chen, P.C.2
Chen, Y.Y.3
-
33
-
-
85014666740
-
Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review
-
Goldstein BA, Navar AM, Pencina MJ, et al: Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review. J Am Med Inform Assoc 2017; 24:198-208
-
(2017)
J Am Med Inform Assoc
, vol.24
, pp. 198-208
-
-
Goldstein, B.A.1
Navar, A.M.2
Pencina, M.J.3
-
34
-
-
84927933357
-
Efficient and sparse feature selection for biomedical text classification via the elastic net: Application to ICU risk stratification from nursing notes
-
Marafino BJ, Boscardin WJ, Dudley RA: Efficient and sparse feature selection for biomedical text classification via the elastic net: Application to ICU risk stratification from nursing notes. J Biomed Inform 2015; 54:114-120
-
(2015)
J Biomed Inform
, vol.54
, pp. 114-120
-
-
Marafino, B.J.1
Boscardin, W.J.2
Dudley, R.A.3
-
35
-
-
84880830110
-
Risk stratification of ICU patients using topic models inferred from unstructured progress notes
-
Lehman LW, Saeed M, Long W, et al: Risk stratification of ICU patients using topic models inferred from unstructured progress notes. AMIA Annu Symp Proc 2012; 2012:505-511
-
(2012)
AMIA Annu Symp Proc
, vol.2012
, pp. 505-511
-
-
Lehman, L.W.1
Saeed, M.2
Long, W.3
-
36
-
-
85010843194
-
Consensus statement on electronic health predictive analytics: A guiding framework to address challenges
-
Amarasingham R, Audet AM, Bates DW, et al: Consensus statement on electronic health predictive analytics: A guiding framework to address challenges. EGEMS (Wash DC) 2016; 4:1163
-
(2016)
EGEMS (Wash DC)
, vol.4
, pp. 1163
-
-
Amarasingham, R.1
Audet, A.M.2
Bates, D.W.3
-
37
-
-
84971287198
-
MIMIC-III, a freely accessible critical care database
-
Johnson AE, Pollard TJ, Shen L, et al: MIMIC-III, a freely accessible critical care database. Sci Data 2016; 3:160035
-
(2016)
Sci Data
, vol.3
, pp. 160035
-
-
Johnson, A.E.1
Pollard, T.J.2
Shen, L.3
-
38
-
-
84954349720
-
Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards
-
Churpek MM, Yuen TC, Winslow C, et al: Multicenter comparison of machine learning methods and conventional regression for predicting clinical deterioration on the wards. Crit Care Med 2016; 44:368-374
-
(2016)
Crit Care Med
, vol.44
, pp. 368-374
-
-
Churpek, M.M.1
Yuen, T.C.2
Winslow, C.3
-
40
-
-
0023710206
-
Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach
-
DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988; 44:837-845
-
(1988)
Biometrics
, vol.44
, pp. 837-845
-
-
DeLong, E.R.1
DeLong, D.M.2
Clarke-Pearson, D.L.3
-
41
-
-
84870908613
-
Standardizing the power of the Hosmer-Lemeshow goodness of fit test in large data sets
-
Paul P, Pennell ML, Lemeshow S: Standardizing the power of the Hosmer-Lemeshow goodness of fit test in large data sets. Stat Med 2013; 32:67-80
-
(2013)
Stat Med
, vol.32
, pp. 67-80
-
-
Paul, P.1
Pennell, M.L.2
Lemeshow, S.3
-
42
-
-
85004097351
-
Gaining insights from social media language: Methodologies and challenges
-
Kern ML, Park G, Eichstaedt JC, et al: Gaining insights from social media language: Methodologies and challenges. Psychol Methods 2016; 21:507-525
-
(2016)
Psychol Methods
, vol.21
, pp. 507-525
-
-
Kern, M.L.1
Park, G.2
Eichstaedt, J.C.3
-
43
-
-
84884541833
-
Personality, gender, and age in the language of social media: The open-vocabulary approach
-
Schwartz HA, Eichstaedt JC, Kern ML, et al: Personality, gender, and age in the language of social media: The open-vocabulary approach. PLoS One 2013; 8:e73791
-
(2013)
PLoS One
, vol.8
-
-
Schwartz, H.A.1
Eichstaedt, J.C.2
Kern, M.L.3
-
45
-
-
85039986912
-
Measurement error in intensive care unit length of stay estimates due to patient flow
-
Harhay MO, Ratcliffe SJ, Halpern SD: Measurement error in intensive care unit length of stay estimates due to patient flow. Am J Epidemiol 2017; 186:1389-1395
-
(2017)
Am J Epidemiol
, vol.186
, pp. 1389-1395
-
-
Harhay, M.O.1
Ratcliffe, S.J.2
Halpern, S.D.3
-
46
-
-
0031613172
-
Comorbidity measures for use with administrative data
-
Elixhauser A, Steiner C, Harris DR, et al: Comorbidity measures for use with administrative data. Med Care 1998; 36:8-27
-
(1998)
Med Care
, vol.36
, pp. 8-27
-
-
Elixhauser, A.1
Steiner, C.2
Harris, D.R.3
-
47
-
-
85064107612
-
-
Accessed November 1, 2017
-
Kuhn M: caret: Variable Importance, 2017. Available at: https://topepo.github.io/caret/variable-importance.html. Accessed November 1, 2017
-
(2017)
Caret: Variable Importance
-
-
Kuhn, M.1
-
48
-
-
85067530991
-
Inclusion of unstructured text data from clinical notes improves early prediction of death or prolonged ICU stay among hospitalized patients. Poster presentation
-
Weissman GE, Hubbard RA, Ungar LH, et al: Inclusion of unstructured text data from clinical notes improves early prediction of death or prolonged ICU stay among hospitalized patients. Poster Presentation. Am J Respir Crit Care Med 2017; 195:A1084
-
(2017)
Am J Respir Crit Care Med
, vol.195
, pp. A1084
-
-
Weissman, G.E.1
Hubbard, R.A.2
Ungar, L.H.3
-
49
-
-
84908024094
-
Adoption of electronic health record systems among U.S. Non - Federal acute care hospitals: 2008-2014
-
Charles D, Gabriel M, Searcy T: Adoption of electronic health record systems among U.S. non - federal acute care hospitals: 2008-2014. ONC Data Brief 2015; 23:1-10
-
(2015)
ONC Data Brief
, vol.23
, pp. 1-10
-
-
Charles, D.1
Gabriel, M.2
Searcy, T.3
|