메뉴 건너뛰기




Volumn 45, Issue 2, 2017, Pages e222-e231

Which models can I use to predict adult ICU length of stay? A systematic review

Author keywords

benchmarking; intensive care units; length of stay; prediction; review

Indexed keywords

ADULT; APACHE; BENCHMARKING; CALIBRATION; CHECKLIST; GEOGRAPHIC DISTRIBUTION; HEART SURGERY; HOSPITAL BED CAPACITY; HOSPITAL MORTALITY; HOSPITAL READMISSION; HUMAN; INTENSIVE CARE UNIT; LENGTH OF STAY; PREDICTION; PRIORITY JOURNAL; REVIEW; SURVIVOR; TEACHING HOSPITAL; TOTAL QUALITY MANAGEMENT; STATISTICAL MODEL; STATISTICS AND NUMERICAL DATA;

EID: 84992110628     PISSN: 00903493     EISSN: 15300293     Source Type: Journal    
DOI: 10.1097/CCM.0000000000002054     Document Type: Review
Times cited : (70)

References (46)
  • 1
    • 85047289948 scopus 로고    scopus 로고
    • Critical care medicine beds, use, occupancy, and costs in the United States: A methodological review
    • Halpern NA, Pastores SM. Critical care medicine beds, use, occupancy, and costs in the United States: A methodological review. Crit Care Med 2015; 43: 2452-2459
    • (2015) Crit Care Med , vol.43 , pp. 2452-2459
    • Halpern, N.A.1    Pastores, S.M.2
  • 2
    • 2942527099 scopus 로고    scopus 로고
    • Critical care medicine in the United States 1985- 2000 An analysis of bed numbers, use, and costs
    • Halpern NA, Pastores SM, Greenstein RJ. Critical care medicine in the United States 1985-2000: An analysis of bed numbers, use, and costs. Crit Care Med 2004; 32: 1254-1259
    • (2004) Crit Care Med , vol.32 , pp. 1254-1259
    • Halpern, N.A.1    Pastores, S.M.2    Greenstein, R.J.3
  • 3
    • 57649110675 scopus 로고    scopus 로고
    • Cost savings attributable to reductions in intensive care unit length of stay for mechanically ventilated patients
    • Kahn JM, Rubenfeld GD, Rohrbach J, et al. Cost savings attributable to reductions in intensive care unit length of stay for mechanically ventilated patients. Med Care 2008; 46: 1226-1233
    • (2008) Med Care , vol.46 , pp. 1226-1233
    • Kahn, J.M.1    Rubenfeld, G.D.2    Rohrbach, J.3
  • 4
    • 0033932726 scopus 로고    scopus 로고
    • What's in a day?. Determining intensive care unit length of stay
    • Marik PE, Hedman L. What's in a day?. Determining intensive care unit length of stay. Crit Care Med 2000; 28: 2090-2093
    • (2000) Crit Care Med , vol.28 , pp. 2090-2093
    • Marik, P.E.1    Hedman, L.2
  • 5
    • 85047698192 scopus 로고    scopus 로고
    • Length of stay data as a guide to hospital economic performance for ICU patients
    • Rapoport J, Teres D, Zhao Y, et al. Length of stay data as a guide to hospital economic performance for ICU patients. Med Care 2003; 41: 386-397
    • (2003) Med Care , vol.41 , pp. 386-397
    • Rapoport, J.1    Teres, D.2    Zhao, Y.3
  • 6
    • 67349189876 scopus 로고    scopus 로고
    • Case-mix-Adjusted length of stay and mortality in 23 Finnish ICUs
    • Niskanen M, Reinikainen M, Pettilä V. Case-mix-Adjusted length of stay and mortality in 23 Finnish ICUs. Intensive Care Med 2009; 35: 1060-1067
    • (2009) Intensive Care Med , vol.35 , pp. 1060-1067
    • Niskanen, M.1    Reinikainen, M.2    Pettilä, V.3
  • 7
    • 84860992090 scopus 로고    scopus 로고
    • Anzics centre for outcome and resource evaluation (core) of the australian and New Zealand intensive care society (anzics): A review of statistical estimators for risk-Adjusted length of stay: Analysis of the australian and New Zealand intensive care adult patient data-base 2008- 2009
    • Moran JL, Solomon PJ. ANZICS Centre for Outcome and Resource Evaluation (CORE) of the Australian and New Zealand Intensive Care Society (ANZICS): A review of statistical estimators for risk-Adjusted length of stay: Analysis of the Australian and New Zealand Intensive Care Adult Patient Data-Base, 2008-2009. BMC Med Res Methodol 2012; 12: 68
    • (2012) BMC Med Res Methodol , vol.12 , pp. 68
    • Moran, J.L.1    Solomon, P.J.2
  • 8
    • 33748771981 scopus 로고    scopus 로고
    • IntensIVe care unit length of stay: Benchmarking based on acute physiology and chronic health evaluation (apache) IV
    • Zimmerman JE, Kramer AA, McNair DS, et al. Intensive care unit length of stay: Benchmarking based on Acute Physiology and Chronic Health Evaluation (APACHE) IV. Crit Care Med 2006; 34: 2517-2529
    • (2006) Crit Care Med , vol.34 , pp. 2517-2529
    • Zimmerman, J.E.1    Kramer, A.A.2    McNair, D.S.3
  • 9
    • 0033692978 scopus 로고    scopus 로고
    • Evaluation of predicted and actual length of stay in 22 Scottish intensive care units using the APACHE III system
    • Woods AW, MacKirdy FN, Livingston BM, et al. Evaluation of predicted and actual length of stay in 22 Scottish intensive care units using the APACHE III system. Acute Physiology and Chronic Health Evaluation. Anaesthesia 2000; 55: 1058-1065
    • (2000) Acute Physiology and Chronic Health Evaluation Anaesthesia , vol.55 , pp. 1058-1065
    • Woods, A.W.1    MacKirdy, F.N.2    Livingston, B.M.3
  • 10
    • 67650835161 scopus 로고    scopus 로고
    • Mortality probability model III and simplified acute physiology score II Assessing their value in predicting length of stay and comparison to APACHE IV
    • Vasilevskis EE, Kuzniewicz MW, Cason BA, et al. Mortality probability model III and simplified acute physiology score II. Assessing their value in predicting length of stay and comparison to APACHE IV. Chest 2009; 136: 89-101
    • (2009) Chest , vol.136 , pp. 89-101
    • Vasilevskis, E.E.1    Kuzniewicz, M.W.2    Cason, B.A.3
  • 11
    • 84910012929 scopus 로고    scopus 로고
    • Comparison of regression methods for modeling intensive care length of stay
    • Verburg IW, de Keizer NF, de Jonge E, et al. Comparison of regression methods for modeling intensive care length of stay. PLoS One 2014; 9: e109684
    • (2014) PLoS One , vol.9 , pp. e109684
    • Verburg, I.W.1    De Keizer, N.F.2    De Jonge, E.3
  • 12
    • 84908330513 scopus 로고    scopus 로고
    • Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist
    • Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: The CHARMS checklist. PLoS Med 2014; 11: e1001744
    • (2014) PLoS Med , vol.11 , pp. e1001744
    • Moons, K.G.1    De Groot, J.A.2    Bouwmeester, W.3
  • 13
    • 84962522193 scopus 로고    scopus 로고
    • Impact analysis studies of clinical prediction rules relevant to primary care: A systematic review
    • Wallace E, Uijen MJ, Clyne B, et al. Impact analysis studies of clinical prediction rules relevant to primary care: A systematic review. BMJ Open 2016; 6: e009957
    • (2016) BMJ Open , vol.6 , pp. e009957
    • Wallace, E.1    Uijen, M.J.2    Clyne, B.3
  • 14
    • 84957921676 scopus 로고    scopus 로고
    • Systematic review of risk prediction models for falls after stroke
    • Walsh ME, Horgan NF, Walsh CD, et al. Systematic review of risk prediction models for falls after stroke. J Epidemiol Community Health 2016; 70: 513-519
    • (2016) J Epidemiol Community Health , vol.70 , pp. 513-519
    • Walsh, M.E.1    Horgan, N.F.2    Walsh, C.D.3
  • 15
    • 84949984014 scopus 로고    scopus 로고
    • Prognostic factors for tumor recurrence in patients with clinical stage i seminoma udergoing surveillance-protocol for a systematic review
    • Kunath F, Spek A, Jensen K, et al. Prognostic factors for tumor recurrence in patients with clinical stage I seminoma udergoing surveillance-protocol for a systematic review. Syst Rev 2015; 4: 182
    • (2015) Syst Rev , vol.4 , pp. 182
    • Kunath, F.1    Spek, A.2    Jensen, K.3
  • 16
    • 80052546577 scopus 로고    scopus 로고
    • Prediction of mortality in very premature infants: A systematic review of prediction models
    • Medlock S, Ravelli AC, Tamminga P, et al. Prediction of mortality in very premature infants: A systematic review of prediction models. PLoS One 2011; 6: e23441
    • (2011) PLoS One , vol.6 , pp. e23441
    • Medlock, S.1    Ravelli, A.C.2    Tamminga, P.3
  • 17
    • 84957076656 scopus 로고    scopus 로고
    • A calibration hierarchy for risk models was defined: From utopia to emperical data
    • Van Calster B, Nieboer D, Vergouwe Y, et al. A calibration hierarchy for risk models was defined: From utopia to emperical data. J Clin Epidemiol 2016; 74: 167-176
    • (2016) J Clin Epidemiol , vol.74 , pp. 167-176
    • Van Calster, B.1    Nieboer, D.2    Vergouwe, Y.3
  • 18
    • 84869993357 scopus 로고    scopus 로고
    • Examining the accuracy of caregivers? Assessments of young children's oral health status
    • Divaris K, Vann WF Jr, Baker AD, et al. Examining the accuracy of caregivers? assessments of young children's oral health status. J Am Dent Assoc 2012; 143: 1237-1247
    • (2012) J Am Dent Assoc , vol.143 , pp. 1237-1247
    • Divaris, K.1    Vann, W.F.2    Baker, A.D.3
  • 19
    • 34547115213 scopus 로고    scopus 로고
    • Variability in outcome and resource use in intensive care units
    • Rothen HU, Stricker K, Einfalt J, et al. Variability in outcome and resource use in intensive care units. Intensive Care Med 2007; 33: 1329-1336
    • (2007) Intensive Care Med , vol.33 , pp. 1329-1336
    • Rothen, H.U.1    Stricker, K.2    Einfalt, J.3
  • 20
    • 0027298174 scopus 로고
    • Variations in mortality and length of stay in intensive care units
    • Knaus WA, Wagner DP, Zimmerman JE, et al. Variations in mortality and length of stay in intensive care units. Ann Intern Med 1993; 118: 753-761
    • (1993) Ann Intern Med , vol.118 , pp. 753-761
    • Knaus, W.A.1    Wagner, D.P.2    Zimmerman, J.E.3
  • 21
    • 0033791746 scopus 로고    scopus 로고
    • Intensive care unit length of stay: Recent changes and future challenges
    • Rosenberg AL, Zimmerman JE, Alzola C, et al. Intensive care unit length of stay: Recent changes and future challenges. Crit Care Med 2000; 28: 3465-3473
    • (2000) Crit Care Med , vol.28 , pp. 3465-3473
    • Rosenberg, A.L.1    Zimmerman, J.E.2    Alzola, C.3
  • 22
    • 33845252504 scopus 로고    scopus 로고
    • Predicting the length of stay of patients admitted for intensive care using a first step analysis
    • Perez A, Chan W, Dennis RJ. Predicting the length of stay of patients admitted for intensive care using a first step analysis. Health Serv Outcomes Res Methodol 2006; 6: 127-138
    • (2006) Health Serv Outcomes Res Methodol , vol.6 , pp. 127-138
    • Perez, A.1    Chan, W.2    Dennis, R.J.3
  • 23
    • 37549001731 scopus 로고    scopus 로고
    • Australian and New Zealand intensive care society database management committee (admc): Mortality and length-of-stay outcomes 1993- 2003 in the binational australian and New Zealand intensive care adult patient database
    • Moran JL, Bristow P, Solomon PJ, et al. Australian and New Zealand Intensive Care Society Database Management Committee (ADMC): Mortality and length-of-stay outcomes, 1993-2003, in the binational Australian and New Zealand intensive care adult patient database. Crit Care Med 2008; 36: 46-61
    • (2008) Crit Care Med , vol.36 , pp. 46-61
    • Moran, J.L.1    Bristow, P.2    Solomon, P.J.3
  • 24
    • 77952078490 scopus 로고    scopus 로고
    • A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay
    • Kramer AA, Zimmerman JE. A predictive model for the early identification of patients at risk for a prolonged intensive care unit length of stay. BMC Med Inform Decis Mak 2010; 10: 27
    • (2010) BMC Med Inform Decis Mak , vol.10 , pp. 27
    • Kramer, A.A.1    Zimmerman, J.E.2
  • 25
    • 12944280269 scopus 로고    scopus 로고
    • Dynamic microsimulation to model multiple outcomes in cohorts of critically ill patients
    • Clermont G, Kaplan V, Moreno R, et al. Dynamic microsimulation to model multiple outcomes in cohorts of critically ill patients. Intensive Care Med 2004; 30: 2237-2244
    • (2004) Intensive Care Med , vol.30 , pp. 2237-2244
    • Clermont, G.1    Kaplan, V.2    Moreno, R.3
  • 26
    • 77951428321 scopus 로고    scopus 로고
    • Developing severity adjusted quality measures for intensive care units
    • Al Tehewy M, El Houssinie M, El Ezz NA, et al. Developing severity adjusted quality measures for intensive care units. Int J Health Care Qual Assur 2010; 23: 277-286
    • (2010) Int J Health Care Qual Assur , vol.23 , pp. 277-286
    • Al Tehewy, M.1    El Houssinie, M.2    El Ezz, N.A.3
  • 27
    • 26444464890 scopus 로고    scopus 로고
    • SAPS 3 Investigators: SAPS 3-From evaluation of the patient to evaluation of the intensive care unit Part 1: Objectives, methods and cohort description
    • Metnitz PG, Moreno RP, Almeida E, et al. SAPS 3 Investigators: SAPS 3-From evaluation of the patient to evaluation of the intensive care unit. Part 1: Objectives, methods and cohort description. Intensive Care Med 2005; 31: 1336-1344
    • (2005) Intensive Care Med , vol.31 , pp. 1336-1344
    • Metnitz, P.G.1    Moreno, R.P.2    Almeida, E.3
  • 28
    • 85009696707 scopus 로고    scopus 로고
    • Public Health England Available at. Accessed October 7, 2016
    • Public Health England: Public Health Observatories (PHOs) 2013. Available at. http://www.apho.org.uk/resource. Accessed October 7, 2016
    • (2013) Public Health Observatories (PHOs
  • 30
    • 77950389784 scopus 로고    scopus 로고
    • Reporting performance of prognostic models in cancer: A review
    • Mallett S, Royston P, Waters R, et al. Reporting performance of prognostic models in cancer: A review. BMC Med 2010; 8: 21
    • (2010) BMC Med , vol.8 , pp. 21
    • Mallett, S.1    Royston, P.2    Waters, R.3
  • 31
    • 77950456857 scopus 로고    scopus 로고
    • Reporting methods in studies developing prognostic models in cancer: A review
    • Mallett S, Royston P, Dutton S, et al. Reporting methods in studies developing prognostic models in cancer: A review. BMC Med 2010; 8: 20
    • (2010) BMC Med , vol.8 , pp. 20
    • Mallett, S.1    Royston, P.2    Dutton, S.3
  • 32
    • 0023941736 scopus 로고
    • Refining intensive care unit outcome prediction by using changing probabilities of mortality
    • Lemeshow S, Teres D, Avrunin JS, et al. Refining intensive care unit outcome prediction by using changing probabilities of mortality. Crit Care Med 1988; 16: 470-477
    • (1988) Crit Care Med , vol.16 , pp. 470-477
    • Lemeshow, S.1    Teres, D.2    Avrunin, J.S.3
  • 33
    • 0027132478 scopus 로고
    • A new simplified acute physiology score (saps II) based on a european/north American multicenter study
    • Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993; 270: 2957-2963
    • (1993) JAMA , vol.270 , pp. 2957-2963
    • Le Gall, J.R.1    Lemeshow, S.2    Saulnier, F.3
  • 34
    • 61349173986 scopus 로고    scopus 로고
    • Prediction of prolonged length of stay in the intensive care unit after cardiac surgery: The need for a multi-institutional risk scoring system
    • Messaoudi N, De Cocker J, Stockman B, et al. Prediction of prolonged length of stay in the intensive care unit after cardiac surgery: The need for a multi-institutional risk scoring system. J Card Surg 2009; 24: 127-133
    • (2009) J Card Surg , vol.24 , pp. 127-133
    • Messaoudi, N.1    De Cocker, J.2    Stockman, B.3
  • 35
    • 84928929655 scopus 로고    scopus 로고
    • The number of subjects per variable required in linear regression analyses
    • Austin PC, Steyerberg EW. The number of subjects per variable required in linear regression analyses. J Clin Epidemiol 2015; 68: 627-636
    • (2015) J Clin Epidemiol , vol.68 , pp. 627-636
    • Austin, P.C.1    Steyerberg, E.W.2
  • 36
    • 2442695245 scopus 로고    scopus 로고
    • What you see may not be what you get: A brief, nontechtnical introduction to overfitting in regression-Type models
    • Babyak MA. What you see may not be what you get: A brief, nontechtnical introduction to overfitting in regression-Type models. Psychosom Med 2004; 66: 411-421
    • (2004) Psychosom Med , vol.66 , pp. 411-421
    • Babyak, M.A.1
  • 37
    • 0043109420 scopus 로고    scopus 로고
    • Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant
    • Kelley K, Maxwell SE. Sample size for multiple regression: Obtaining regression coefficients that are accurate, not simply significant. Psychol Methods 2003; 8: 305-321
    • (2003) Psychol Methods , vol.8 , pp. 305-321
    • Kelley, K.1    Maxwell, S.E.2
  • 39
    • 0029613841 scopus 로고
    • Importance of events per independent variable in proportional hazards regression analysis II Accuracy and precision of regression estimates
    • Peduzzi P, Concato J, Feinstein AR, et al. Importance of events per independent variable in proportional hazards regression analysis. II. Accuracy and precision of regression estimates. J Clin Epidemiol 1995; 48: 1503-1510
    • (1995) J Clin Epidemiol , vol.48 , pp. 1503-1510
    • Peduzzi, P.1    Concato, J.2    Feinstein, A.R.3
  • 40
    • 0030069896 scopus 로고    scopus 로고
    • Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors
    • Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: Issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med 1996; 15: 361-387
    • (1996) Stat Med , vol.15 , pp. 361-387
    • Harrell, F.E.1    Lee, K.L.2    Mark, D.B.3
  • 41
    • 0000710136 scopus 로고    scopus 로고
    • Joint modelling of longitudinal measurements and event time data
    • Henderson R, Diggle P, Dobson A. Joint modelling of longitudinal measurements and event time data. Biostatistics 2000; 1: 465-480
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 42
    • 67651061641 scopus 로고    scopus 로고
    • Prognostic models with competing risks: Methods and application to coronary risk prediction
    • Wolbers M, Koller MT, Witteman JC, et al. Prognostic models with competing risks: Methods and application to coronary risk prediction. Epidemiology 2009; 20: 555-561
    • (2009) Epidemiology , vol.20 , pp. 555-561
    • Wolbers, M.1    Koller, M.T.2    Witteman, J.C.3
  • 45
    • 0003309979 scopus 로고    scopus 로고
    • Quantile regression an introduction
    • Koenker R, Hallock KF. Quantile regression an introduction. J Econ Perspect 2001; 14: 123-148
    • (2001) J Econ Perspect , vol.14 , pp. 123-148
    • Koenker, R.1    Hallock, K.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.