메뉴 건너뛰기




Volumn 19, Issue 2, 2019, Pages

Evaluation of machine learning approaches to predict soil organic matter and pH using vis-NIR spectra

Author keywords

Machine learning approaches; Paddy soil; PH; Soil organic matter; Vis NIR spectra

Indexed keywords

ARTIFICIAL INTELLIGENCE; BIOGEOCHEMISTRY; BIOLOGICAL MATERIALS; FORECASTING; GENETIC ALGORITHMS; INFRARED DEVICES; LANDFORMS; LEAST SQUARES APPROXIMATIONS; MEAN SQUARE ERROR; ORGANIC COMPOUNDS; PH; REGRESSION ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 85060046768     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s19020263     Document Type: Article
Times cited : (115)

References (47)
  • 1
    • 56449097864 scopus 로고    scopus 로고
    • Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China
    • Darilek, J.L.; Huang, B.; Wang, Z.; Qi, Y.; Zhao, Y.; Sun, W.; Gu, Z.; Shi, X. Changes in soil fertility parameters and the environmental effects in a rapidly developing region of China. Agric. Ecosyst. Environ. 2009, 129, 286–292. [CrossRef]
    • (2009) Agric. Ecosyst. Environ. , vol.129 , pp. 286-292
    • Darilek, J.L.1    Huang, B.2    Wang, Z.3    Qi, Y.4    Zhao, Y.5    Sun, W.6    Gu, Z.7    Shi, X.8
  • 2
    • 80053054108 scopus 로고    scopus 로고
    • Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy
    • Vohland, M.; Besold, J.; Hill, J.; Fründ, H.-C. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma 2011, 166, 198–205. [CrossRef]
    • (2011) Geoderma , vol.166 , pp. 198-205
    • Vohland, M.1    Besold, J.2    Hill, J.3    Fründ, H.-C.4
  • 3
    • 0025919906 scopus 로고
    • Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy
    • Morra, M.J.; Hall, M.H.; Freeborn, L.L. Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroscopy. Soil Sci. Soc. Am. J. 1991, 55, 288–291. [CrossRef]
    • (1991) Soil Sci. Soc. Am. J. , vol.55 , pp. 288-291
    • Morra, M.J.1    Hall, M.H.2    Freeborn, L.L.3
  • 5
    • 85027936542 scopus 로고    scopus 로고
    • Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques
    • Araújo, S.R.; Wetterlind, J.; Demattê, J.A.M.; Stenberg, B. Improving the prediction performance of a large tropical vis-NIR spectroscopic soil library from Brazil by clustering into smaller subsets or use of data mining calibration techniques. Eur. J. Soil Sci. 2014, 65, 718–729. [CrossRef]
    • (2014) Eur. J. Soil Sci. , vol.65 , pp. 718-729
    • Araújo, S.R.1    Wetterlind, J.2    Demattê, J.A.M.3    Stenberg, B.4
  • 6
    • 85013941242 scopus 로고    scopus 로고
    • Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution
    • Hu, B.; Chen, S.; Hu, J.; Xia, F.; Xu, J.; Li, Y.; Shi, Z. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. PLoS ONE 2017, 12, e0172438. [CrossRef] [PubMed]
    • (2017) Plos ONE , vol.12
    • Hu, B.1    Chen, S.2    Hu, J.3    Xia, F.4    Xu, J.5    Li, Y.6    Shi, Z.7
  • 7
    • 84934437782 scopus 로고    scopus 로고
    • Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis–NIR spectral library
    • Shi, Z.; Ji, W.; Viscarra Rossel, R.A.; Chen, S.; Zhou, Y. Prediction of soil organic matter using a spatially constrained local partial least squares regression and the Chinese vis–NIR spectral library. Eur. J. Soil Sci. 2015, 66, 679–687. [CrossRef]
    • (2015) Eur. J. Soil Sci. , vol.66 , pp. 679-687
    • Shi, Z.1    Ji, W.2    Viscarra Rossel, R.A.3    Chen, S.4    Zhou, Y.5
  • 8
    • 84933574072 scopus 로고    scopus 로고
    • Potential of VIS-NIR-SWIR Spectroscopy from the Chinese Soil Spectral Library for Assessment of Nitrogen Fertilization Rates in the Paddy-Rice Region, China
    • Li, S.; Ji, W.; Chen, S.; Peng, J.; Zhou, Y.; Shi, Z. Potential of VIS-NIR-SWIR Spectroscopy from the Chinese Soil Spectral Library for Assessment of Nitrogen Fertilization Rates in the Paddy-Rice Region, China. Remote Sens. 2015, 7, 7029–7043. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 7029-7043
    • Li, S.1    Ji, W.2    Chen, S.3    Peng, J.4    Zhou, Y.5    Shi, Z.6
  • 9
    • 84871589765 scopus 로고    scopus 로고
    • Predicting soil properties from the Australian soil visible–near infrared spectroscopic database
    • Viscarra Rossel, R.A.; Webster, R. Predicting soil properties from the Australian soil visible–near infrared spectroscopic database. Eur. J. Soil Sci. 2012, 63, 848–860. [CrossRef]
    • (2012) Eur. J. Soil Sci. , vol.63 , pp. 848-860
    • Viscarra Rossel, R.A.1    Webster, R.2
  • 10
    • 77953621099 scopus 로고    scopus 로고
    • Using data mining to model and interpret soil diffuse reflectance spectra
    • Viscarra Rossel, R.A.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [CrossRef]
    • (2010) Geoderma , vol.158 , pp. 46-54
    • Viscarra Rossel, R.A.1    Behrens, T.2
  • 11
    • 34250856830 scopus 로고    scopus 로고
    • Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton–viscose textiles
    • Durand, A.; Devos, O.; Ruckebusch, C.; Huvenne, J.P. Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton–viscose textiles. Anal. Chim. Acta 2007, 595, 72–79. [CrossRef]
    • (2007) Anal. Chim. Acta , vol.595 , pp. 72-79
    • Durand, A.1    Devos, O.2    Ruckebusch, C.3    Huvenne, J.P.4
  • 12
    • 84957892177 scopus 로고    scopus 로고
    • Remote sensing based simple models of GPP in both disturbed and undisturbed piñon-juniper woodlands in the southwestern
    • Krofcheck, D.; Eitel, J.; Lippitt, C.; Vierling, L.; Schulthess, U.; Litvak, M. Remote sensing based simple models of GPP in both disturbed and undisturbed piñon-juniper woodlands in the southwestern U.S. Remote Sens. 2016, 8, 20. [CrossRef]
    • (2016) U.S. Remote Sens , vol.8 , pp. 20
    • Krofcheck, D.1    Eitel, J.2    Lippitt, C.3    Vierling, L.4    Schulthess, U.5    Litvak, M.6
  • 13
    • 68949140728 scopus 로고    scopus 로고
    • A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data
    • Menze, B.H.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinf. 2009, 10, 213. [CrossRef] [PubMed]
    • (2009) BMC Bioinf , vol.10 , pp. 213
    • Menze, B.H.1    Kelm, B.M.2    Masuch, R.3    Himmelreich, U.4    Bachert, P.5    Petrich, W.6    Hamprecht, F.A.7
  • 16
    • 84894887900 scopus 로고    scopus 로고
    • Computer Aided Design of Experiments
    • Kennard, R.W.; Stone, L.A. Computer Aided Design of Experiments. Technometrics 2012, 11, 137–148. [CrossRef]
    • (2012) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 17
    • 0021644332 scopus 로고
    • Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications
    • Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 1984, 89, 6329–6340. [CrossRef]
    • (1984) J. Geophys. Res. , vol.89 , pp. 6329-6340
    • Clark, R.N.1    Roush, T.L.2
  • 18
    • 3342919201 scopus 로고    scopus 로고
    • Genetic algorithms (GA) applied to the orthogonal projection approach (OPA) for variable selection
    • Gourvénec, S.; Capron, X.; Massart, D.L. Genetic algorithms (GA) applied to the orthogonal projection approach (OPA) for variable selection. Anal. Chim. Acta 2004, 519, 11–21. [CrossRef]
    • (2004) Anal. Chim. Acta , vol.519 , pp. 11-21
    • Gourvénec, S.1    Capron, X.2    Massart, D.L.3
  • 19
    • 0028326045 scopus 로고
    • Genetic algorithms in wavelength selection: A comparative study
    • Lucasius, C.B.; Beckers, M.L.M.; Kateman, G. Genetic algorithms in wavelength selection: A comparative study. Anal. Chim. Acta 1994, 286, 135–153. [CrossRef]
    • (1994) Anal. Chim. Acta , vol.286 , pp. 135-153
    • Lucasius, C.B.1    Beckers, M.L.M.2    Kateman, G.3
  • 20
    • 85060903308 scopus 로고    scopus 로고
    • Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China
    • Xu, D.; Zhao, R.; Li, S.; Chen, S.; Jiang, Q.; Zhou, L.; Shi, Z. Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China. Eur. J. Soil Sci. 2018. [CrossRef]
    • (2018) Eur. J. Soil Sci.
    • Xu, D.1    Zhao, R.2    Li, S.3    Chen, S.4    Jiang, Q.5    Zhou, L.6    Shi, Z.7
  • 21
    • 0037150785 scopus 로고    scopus 로고
    • Variable selection for multivariate calibration using a genetic algorithm: Prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data
    • Leardi, R.; Seasholtz, M.B.; Pell, R.J. Variable selection for multivariate calibration using a genetic algorithm: Prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data. Anal. Chim. Acta 2002, 461, 189–200. [CrossRef]
    • (2002) Anal. Chim. Acta , vol.461 , pp. 189-200
    • Leardi, R.1    Seasholtz, M.B.2    Pell, R.J.3
  • 22
    • 84929043486 scopus 로고    scopus 로고
    • Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: Feature selection
    • Shi, T.; Chen, Y.; Liu, H.; Wang, J.; Wu, G. Soil organic carbon content estimation with laboratory-based visible-near-infrared reflectance spectroscopy: Feature selection. Appl. Spectrosc. 2014, 68, 831–837. [CrossRef]
    • (2014) Appl. Spectrosc. , vol.68 , pp. 831-837
    • Shi, T.1    Chen, Y.2    Liu, H.3    Wang, J.4    Wu, G.5
  • 23
    • 36749102560 scopus 로고    scopus 로고
    • ParLeS: Software for chemometric analysis of spectroscopic data
    • Viscarra Rossel, R.A. ParLeS: Software for chemometric analysis of spectroscopic data. Chemometr. Intell. Lab. 2008, 90, 72–83. [CrossRef]
    • (2008) Chemometr. Intell. Lab. , vol.90 , pp. 72-83
    • Viscarra Rossel, R.A.1
  • 24
  • 26
    • 5344244656 scopus 로고    scopus 로고
    • R Foundation for Statistical Computing, Vienna, accessed on 6 March 2017
    • The R Development Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. Available online: https://www.R–project.org/(accessed on 6 March 2017).
    • R: A Language and Environment for Statistical Computing
  • 29
    • 50249188241 scopus 로고    scopus 로고
    • Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy
    • Minasny, B.; McBratney, A.B. Regression rules as a tool for predicting soil properties from infrared reflectance spectroscopy. Chemometr. Intell. Lab. 2008, 94, 72–79. [CrossRef]
    • (2008) Chemometr. Intell. Lab. , vol.94 , pp. 72-79
    • Minasny, B.1    McBratney, A.B.2
  • 31
    • 79955949788 scopus 로고    scopus 로고
    • Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
    • Bellon-Maurel, V.; Fernandez-Ahumada, E.; Palagos, B.; Roger, J.-M.; McBratney, A. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends Anal. Chem. 2010, 29, 1073–1081. [CrossRef]
    • (2010) Trac Trends Anal. Chem. , vol.29 , pp. 1073-1081
    • Bellon-Maurel, V.1    Fernandez-Ahumada, E.2    Palagos, B.3    Roger, J.-M.4    McBratney, A.5
  • 32
    • 0001856275 scopus 로고
    • Spatial variability: Its documentation, accommodation and implication to soil survey
    • Las Vegas, NV, USA, 30 November–1 September 1985; Nielsen, D.R., Bauma, J., Eds.; Pudoc: Wageningen, The Netherlands
    • Wilding, L.G. Spatial variability: Its documentation, accommodation and implication to soil survey. In Soil Spatial Variability, Proceedings of the ISSS and SSSA, Las Vegas, NV, USA, 30 November–1 September 1985; Nielsen, D.R., Bauma, J., Eds.; Pudoc: Wageningen, The Netherlands, 1985; pp. 166–187.
    • (1985) Soil Spatial Variability, Proceedings of the ISSS and SSSA , pp. 166-187
    • Wilding, L.G.1
  • 33
    • 84870163021 scopus 로고    scopus 로고
    • Predicting soil phosphorous and other properties using near infrared spectroscopy
    • Abdi, D.; Tremblay, G.F.; Ziadi, N.; Bélanger, G.; Parent, L.-É. Predicting soil phosphorous and other properties using near infrared spectroscopy. Soil Sci. Soc. Am. J. 2012, 76, 2318–2326. [CrossRef]
    • (2012) Soil Sci. Soc. Am. J. , vol.76 , pp. 2318-2326
    • Abdi, D.1    Tremblay, G.F.2    Ziadi, N.3    Bélanger, G.4    Parent, L.-É.5
  • 35
    • 0019728521 scopus 로고
    • Characteristic variations in reflectance of surface soils
    • Stoner, E.R.; Baumgardner, M.F. Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J. 1981, 45, 1161–1165. [CrossRef]
    • (1981) Soil Sci. Soc. Am. J. , vol.45 , pp. 1161-1165
    • Stoner, E.R.1    Baumgardner, M.F.2
  • 36
    • 0042894381 scopus 로고
    • High spectral resolution reflectance spectroscopy of minerals
    • Clark, R.N.; King, T.T.V.; Matthew, K.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 12653–12680. [CrossRef]
    • (1990) J. Geophys. Res. , vol.95 , pp. 12653-12680
    • Clark, R.N.1    King, T.T.V.2    Matthew, K.3    Swayze, G.A.4    Vergo, N.5
  • 37
    • 79151484699 scopus 로고    scopus 로고
    • Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes
    • Zhao, M.; Fu, C.; Ji, L.; Tang, K.; Zhou, M. Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes. Expert Syst. Appl. 2011, 38, 5197–5204. [CrossRef]
    • (2011) Expert Syst. Appl. , vol.38 , pp. 5197-5204
    • Zhao, M.1    Fu, C.2    Ji, L.3    Tang, K.4    Zhou, M.5
  • 38
    • 85019086412 scopus 로고    scopus 로고
    • Determination of rice root density from Vis–NIR spectroscopy by support vector machine regression and spectral variable selection techniques
    • Xu, S.; Zhao, Y.; Wang, M.; Shi, X. Determination of rice root density from Vis–NIR spectroscopy by support vector machine regression and spectral variable selection techniques. Catena 2017, 157, 12–23. [CrossRef]
    • (2017) Catena , vol.157 , pp. 12-23
    • Xu, S.1    Zhao, Y.2    Wang, M.3    Shi, X.4
  • 39
    • 65649150350 scopus 로고    scopus 로고
    • Improved analysis and modelling of soil diffuse reflectance spectra using wavelets
    • Viscarra Rossel, R.A.; Lark, R.M. Improved analysis and modelling of soil diffuse reflectance spectra using wavelets. Eur. J. Soil Sci. 2009, 60, 453–464. [CrossRef]
    • (2009) Eur. J. Soil Sci. , vol.60 , pp. 453-464
    • Viscarra Rossel, R.A.1    Lark, R.M.2
  • 40
    • 84928388074 scopus 로고    scopus 로고
    • In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai–Tibet Plateau
    • Li, S.; Shi, Z.; Chen, S.; Ji, W.; Zhou, L.; Yu, W.; Webster, R. In situ measurements of organic carbon in soil profiles using vis-NIR spectroscopy on the Qinghai–Tibet Plateau. Environ. Sci. Technol. 2015, 49, 4980–4987. [CrossRef] [PubMed]
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 4980-4987
    • Li, S.1    Shi, Z.2    Chen, S.3    Ji, W.4    Zhou, L.5    Yu, W.6    Webster, R.7
  • 41
    • 85029405976 scopus 로고    scopus 로고
    • Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy
    • Xu, S.; Zhao, Y.; Wang, M.; Shi, X. Comparison of multivariate methods for estimating selected soil properties from intact soil cores of paddy fields by Vis–NIR spectroscopy. Geoderma 2018, 310, 29–43. [CrossRef]
    • (2018) Geoderma , vol.310 , pp. 29-43
    • Xu, S.1    Zhao, Y.2    Wang, M.3    Shi, X.4
  • 42
    • 77953620835 scopus 로고    scopus 로고
    • Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy
    • Mouazen, A.M.; Kuang, B.; De Baerdemaeker, J.; Ramon, H. Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma 2010, 158, 23–31. [CrossRef]
    • (2010) Geoderma , vol.158 , pp. 23-31
    • Mouazen, A.M.1    Kuang, B.2    de Baerdemaeker, J.3    Ramon, H.4
  • 43
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: Theory and applications
    • Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [CrossRef]
    • (2006) Neurocomputing , vol.70 , pp. 489-501
    • Huang, G.B.1    Zhu, Q.Y.2    Siew, C.K.3
  • 44
    • 85047987974 scopus 로고    scopus 로고
    • Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition
    • Prasad, R.; Deo, R.C.; Li, Y.; Maraseni, T. Soil moisture forecasting by a hybrid machine learning technique: ELM integrated with ensemble empirical mode decomposition. Geoderma 2018, 330, 136–161. [CrossRef]
    • (2018) Geoderma , vol.330 , pp. 136-161
    • Prasad, R.1    Deo, R.C.2    Li, Y.3    Maraseni, T.4
  • 45
    • 84908682236 scopus 로고    scopus 로고
    • Trends in extreme learning machines: A review
    • Huang, G.; Song, S.; You, K. Trends in extreme learning machines: A review. Neural Netw. 2015, 61, 32–48. [CrossRef]
    • (2015) Neural Netw , vol.61 , pp. 32-48
    • Huang, G.1    Song, S.2    You, K.3
  • 46
    • 84929711432 scopus 로고    scopus 로고
    • What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle
    • Huang, G.B. What are extreme learning machines? Filling the gap between Frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn. Comput. 2015, 7, 263–278. [CrossRef]
    • (2015) Cogn. Comput. , vol.7 , pp. 263-278
    • Huang, G.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.