-
1
-
-
84975122314
-
Computational flow cytometry: Helping to make sense of high-dimensional immunology data
-
Saeys, Y., Van Gassen, S. & Lambrecht, B.N. Computational flow cytometry: helping to make sense of high-dimensional immunology data. Nat. Rev. Immunol. 16, 449–462 (2016).
-
(2016)
Nat. Rev. Immunol.
, vol.16
, pp. 449-462
-
-
Saeys, Y.1
van Gassen, S.2
Lambrecht, B.N.3
-
2
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
Tenenbaum, J.B., De Silva, V. & Langford, J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2323 (2000).
-
(2000)
Science
, vol.290
, pp. 2319-2323
-
-
Tenenbaum, J.B.1
de Silva, V.2
Langford, J.C.3
-
3
-
-
19644394100
-
Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
-
Coifman, R.R. et al. Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc. Natl. Acad. Sci. USA 102, 7426–7431 (2005).
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 7426-7431
-
-
Coifman, R.R.1
-
4
-
-
57249084011
-
Visualizing high-dimensional data using t-SNE. Journal of machine learning research
-
Van Der Maaten, L. & Hinton, G. Visualizing high-dimensional data using t-SNE. journal of machine learning research. J. Mach. Learn. Res. 9, 26 (2008).
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 26
-
-
van Der Maaten, L.1
Hinton, G.2
-
5
-
-
84880280631
-
ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia
-
Amir, A.D. et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat. Biotechnol. 31, 545–552 (2013).
-
(2013)
Nat. Biotechnol.
, vol.31
, pp. 545-552
-
-
Amir, A.D.1
-
6
-
-
84967144030
-
Mass cytometry of the human mucosal immune system identifies tissue-and disease-associated immune subsets
-
van Unen, V. et al. Mass cytometry of the human mucosal immune system identifies tissue-and disease-associated immune subsets. Immunity 44, 1227–1239 (2016).
-
(2016)
Immunity
, vol.44
, pp. 1227-1239
-
-
van Unen, V.1
-
8
-
-
85058075281
-
UMAP: Uniform manifold approximation and projection
-
McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).
-
(2018)
J. Open Source Softw.
, vol.3
, pp. 861
-
-
McInnes, L.1
Healy, J.2
Saul, N.3
Großberger, L.4
-
9
-
-
85042366842
-
Mapping the mouse cell atlas by microwell-seq
-
Han, X. et al. Mapping the mouse cell atlas by microwell-seq. Cell 172, 1091–1107. e17 (2018).
-
(2018)
Cell
, vol.172
, pp. 1091-1107
-
-
Han, X.1
-
10
-
-
84968624557
-
Automated mapping of phenotype space with single-cell data
-
Samusik, N., Good, Z., Spitzer, M.H., Davis, K.L. & Nolan, G.P. Automated mapping of phenotype space with single-cell data. Nat. Methods 13, 493–496 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 493-496
-
-
Samusik, N.1
Good, Z.2
Spitzer, M.H.3
Davis, K.L.4
Nolan, G.P.5
-
11
-
-
84994242550
-
A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures
-
Wong, M.T. et al. A high-dimensional atlas of human T cell diversity reveals tissue-specific trafficking and cytokine signatures. Immunity 45, 442–456 (2016).
-
(2016)
Immunity
, vol.45
, pp. 442-456
-
-
Wong, M.T.1
-
12
-
-
84919775831
-
Accelerating t-SNE using tree-based algorithms
-
Van Der Maaten, L. Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15, 3221–3245 (2014).
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 3221-3245
-
-
van Der Maaten, L.1
-
13
-
-
85057936194
-
-
Linderman, G.C., Rachh, M., Hoskins, J.G., Steinerberger, S. & Kluger, Y. Efficient algorithms for t-distributed stochastic neighborhood embedding. Preprint at https://arxiv.org/abs/1712.09005 (2017).
-
(2017)
Efficient Algorithms for T-Distributed Stochastic Neighborhood Embedding
-
-
Linderman, G.C.1
Rachh, M.2
Hoskins, J.G.3
Steinerberger, S.4
Kluger, Y.5
-
14
-
-
85047423831
-
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
-
Ding, J., Condon, A. & Shah, S.P. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models. Nat. Commun. 9, 2002 (2018).
-
(2018)
Nat. Commun.
, vol.9
, pp. 2002
-
-
Ding, J.1
Condon, A.2
Shah, S.P.3
-
15
-
-
84934442835
-
Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis
-
Levine, J.H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).
-
(2015)
Cell
, vol.162
, pp. 184-197
-
-
Levine, J.H.1
-
16
-
-
84964475986
-
Transcriptional regulation of mast cell and basophil lineage commitment
-
Huang, H., Li, Y. & Liu, B. Transcriptional regulation of mast cell and basophil lineage commitment. Semin. Immunopathol. 38, 539–548 (2016).
-
(2016)
Semin. Immunopathol.
, vol.38
, pp. 539-548
-
-
Huang, H.1
Li, Y.2
Liu, B.3
-
18
-
-
84990060982
-
Haemopedia: An expression atlas of murine hematopoietic cells
-
de Graaf, C.A. et al. Haemopedia: an expression atlas of murine hematopoietic cells. Stem Cell Rep. 7, 571–582 (2016).
-
(2016)
Stem Cell Rep
, vol.7
, pp. 571-582
-
-
de Graaf, C.A.1
-
19
-
-
33847684258
-
The pre-B-cell receptor
-
Mårtensson, I.-L., Keenan, R.A. & Licence, S. The pre-B-cell receptor. Curr. Opin. Immunol. 19, 137–142 (2007).
-
(2007)
Curr. Opin. Immunol.
, vol.19
, pp. 137-142
-
-
Mårtensson, I.-L.1
Keenan, R.A.2
Licence, S.3
-
20
-
-
85041394976
-
SCANPY: Large-scale single-cell gene expression data analysis
-
Wolf, F.A., Angerer, P. & Theis, F.J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).
-
(2018)
Genome Biol
, vol.19
, Issue.15
-
-
Wolf, F.A.1
Angerer, P.2
Theis, F.J.3
-
21
-
-
85046298440
-
Integrating single-cell transcriptomic data across different conditions, technologies, and species
-
Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).
-
(2018)
Nat. Biotechnol.
, vol.36
, pp. 411-420
-
-
Butler, A.1
Hoffman, P.2
Smibert, P.3
Papalexi, E.4
Satija, R.5
-
22
-
-
85032583384
-
SCENIC: Single-cell regulatory network inference and clustering
-
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017).
-
(2017)
Nat. Methods
, vol.14
, pp. 1083-1086
-
-
Aibar, S.1
|