메뉴 건너뛰기




Volumn 18, Issue 12, 2018, Pages

Comparing RGB-D sensors for close range outdoor agricultural phenotyping

Author keywords

Empirical analysis; INTEL D 435; INTEL SR300; Microsoft kinect; ORBBEC ASTRA S; Phenotyping; RGB D sensors; Sensors in agriculture

Indexed keywords

AUTOMATION;

EID: 85058663012     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s18124413     Document Type: Article
Times cited : (86)

References (41)
  • 1
    • 84055178582 scopus 로고    scopus 로고
    • Global food demand and the sustainable intensification of agriculture
    • Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [CrossRef] [PubMed]
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 20260-20264
    • Tilman, D.1    Balzer, C.2    Hill, J.3    Befort, B.L.4
  • 2
    • 84891372768 scopus 로고    scopus 로고
    • Field high-throughput phenotyping: The new crop breeding frontier
    • Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [CrossRef] [PubMed]
    • (2014) Trends Plant Sci , vol.19 , pp. 52-61
    • Araus, J.L.1    Cairns, J.E.2
  • 3
    • 84922240808 scopus 로고    scopus 로고
    • Image-based phenotyping of plant disease symptoms
    • Mutka, A.M.; Bart, R.S. Image-based phenotyping of plant disease symptoms. Front. Plant Sci. 2015, 5, 734. [CrossRef] [PubMed]
    • (2015) Front. Plant Sci. , vol.5 , pp. 734
    • Mutka, A.M.1    Bart, R.S.2
  • 5
    • 84923536786 scopus 로고    scopus 로고
    • Lights, camera, action: High-throughput plant phenotyping is ready for a close-up
    • Fahlgren, N.; Gehan, M.A.; Baxter, I. Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr. Opin. Plant Biol. 2015, 24, 93–99. [CrossRef] [PubMed]
    • (2015) Curr. Opin. Plant Biol. , vol.24 , pp. 93-99
    • Fahlgren, N.1    Gehan, M.A.2    Baxter, I.3
  • 8
    • 84939771517 scopus 로고    scopus 로고
    • Kinect range sensing: Structured-light versus Time-of-Flight Kinect
    • Sarbolandi, H.; Lefloch, D.; Kolb, A. Kinect range sensing: Structured-light versus Time-of-Flight Kinect. Comput. Vis. Image Underst. 2015, 139, 1–20. [CrossRef]
    • (2015) Comput. Vis. Image Underst. , vol.139 , pp. 1-20
    • Sarbolandi, H.1    Lefloch, D.2    Kolb, A.3
  • 9
    • 85043329065 scopus 로고    scopus 로고
    • Drones: The newest technology for precision agriculture
    • Stehr, N.J. Drones: The newest technology for precision agriculture. Nat. Sci. Educ. 2015, 44, 89–91. [CrossRef]
    • (2015) Nat. Sci. Educ. , vol.44 , pp. 89-91
    • Stehr, N.J.1
  • 11
    • 84890399408 scopus 로고    scopus 로고
    • Enhanced computer vision with microsoft kinect sensor: A review
    • Han, J.; Shao, L.; Xu, D.; Shotton, J. Enhanced computer vision with microsoft kinect sensor: A review. IEEE Trans. Cybern. 2013, 43, 1318–1334.
    • (2013) IEEE Trans. Cybern. , vol.43 , pp. 1318-1334
    • Han, J.1    Shao, L.2    Xu, D.3    Shotton, J.4
  • 13
    • 84939817577 scopus 로고    scopus 로고
    • In situ 3D segmentation of individual plant leaves using a RGB-D camera for agricultural automation
    • Xia, C.; Wang, L.; Chung, B.K.; Lee, J.M. In situ 3D segmentation of individual plant leaves using a RGB-D camera for agricultural automation. Sensors 2015, 15, 20463–20479. [CrossRef] [PubMed]
    • (2015) Sensors , vol.15 , pp. 20463-20479
    • Xia, C.1    Wang, L.2    Chung, B.K.3    Lee, J.M.4
  • 14
    • 84904015167 scopus 로고    scopus 로고
    • Size estimation of sweet onions using consumer-grade RGB-depth sensor
    • Wang, W.; Li, C. Size estimation of sweet onions using consumer-grade RGB-depth sensor. J. Food Eng. 2014, 142, 153–162. [CrossRef]
    • (2014) J. Food Eng. , vol.142 , pp. 153-162
    • Wang, W.1    Li, C.2
  • 15
    • 85046894339 scopus 로고    scopus 로고
    • On-Tree Mango Fruit Size Estimation Using RGB-D Images
    • Wang, Z.; Walsh, K.B.; Verma, B. On-Tree Mango Fruit Size Estimation Using RGB-D Images. Sensors 2017, 17, 2738. [CrossRef] [PubMed]
    • (2017) Sensors , vol.17 , pp. 2738
    • Wang, Z.1    Walsh, K.B.2    Verma, B.3
  • 16
    • 85046264131 scopus 로고    scopus 로고
    • Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations
    • Hui, F.; Zhu, J.; Hu, P.; Meng, L.; Zhu, B.; Guo, Y.; Li, B.; Ma, Y. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations. Ann. Bot. 2018, 121, 1079–1088. [CrossRef] [PubMed]
    • (2018) Ann. Bot. , vol.121 , pp. 1079-1088
    • Hui, F.1    Zhu, J.2    Hu, P.3    Meng, L.4    Zhu, B.5    Guo, Y.6    Li, B.7    Ma, Y.8
  • 17
    • 84875178849 scopus 로고    scopus 로고
    • Rapid characterization of vegetation structure with a Microsoft Kinect sensor
    • Azzari, G.; Goulden, M.L.; Rusu, R.B. Rapid characterization of vegetation structure with a Microsoft Kinect sensor. Sensors 2013, 13, 2384–2398. [CrossRef]
    • (2013) Sensors , vol.13 , pp. 2384-2398
    • Azzari, G.1    Goulden, M.L.2    Rusu, R.B.3
  • 18
    • 85041300084 scopus 로고    scopus 로고
    • Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera
    • Jiang, Y.; Li, C.; Paterson, A.H.; Sun, S.; Xu, R.; Robertson, J. Quantitative Analysis of Cotton Canopy Size in Field Conditions Using a Consumer-Grade RGB-D Camera. Front. Plant Sci. 2018, 8, 2233. [CrossRef]
    • (2018) Front. Plant Sci , vol.8 , pp. 2233
    • Jiang, Y.1    Li, C.2    Paterson, A.H.3    Sun, S.4    Xu, R.5    Robertson, J.6
  • 19
    • 85058585353 scopus 로고    scopus 로고
    • Peduncle detection of sweet pepper for autonomous crop harvesting—Combined Color and 3-D Information
    • Sa, I.; Lehnert, C.; English, A.; McCool, C.; Dayoub, F.; Upcroft, B.; Perez, T. Peduncle detection of sweet pepper for autonomous crop harvesting—Combined Color and 3-D Information. IEEE Robot. Autom. Lett. 2017, 2, 765–772. [CrossRef]
    • (2017) IEEE Robot. Autom. Lett. , vol.2 , pp. 765-772
    • Sa, I.1    Lehnert, C.2    English, A.3    McCool, C.4    Dayoub, F.5    Upcroft, B.6    Perez, T.7
  • 21
    • 84865588818 scopus 로고    scopus 로고
    • Computer vision for fruit harvesting robots—State of the art and challenges ahead
    • Kapach, K.; Barnea, E.; Mairon, R.; Edan, Y.; Ben-Shahar, O. Computer vision for fruit harvesting robots—State of the art and challenges ahead. Int. J. Comput. Vis. Robot. 2012, 3, 4–34. [CrossRef]
    • (2012) Int. J. Comput. Vis. Robot. , vol.3 , pp. 4-34
    • Kapach, K.1    Barnea, E.2    Mairon, R.3    Edan, Y.4    Ben-Shahar, O.5
  • 22
    • 84934980536 scopus 로고    scopus 로고
    • Sensors and systems for fruit detection and localization: A review
    • Gongal, A.; Amatya, S.; Karkee, M.; Zhang, Q.; Lewis, K. Sensors and systems for fruit detection and localization: A review. Comput. Electron. Agric. 2015, 116, 8–19. [CrossRef]
    • (2015) Comput. Electron. Agric. , vol.116 , pp. 8-19
    • Gongal, A.1    Amatya, S.2    Karkee, M.3    Zhang, Q.4    Lewis, K.5
  • 23
    • 84928660960 scopus 로고    scopus 로고
    • Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level
    • Rose, J.C.; Paulus, S.; Kuhlmann, H. Accuracy analysis of a multi-view stereo approach for phenotyping of tomato plants at the organ level. Sensors 2015, 15, 9651–9665. [CrossRef]
    • (2015) Sensors , vol.15 , pp. 9651-9665
    • Rose, J.C.1    Paulus, S.2    Kuhlmann, H.3
  • 26
    • 84924587825 scopus 로고    scopus 로고
    • A Comparison between Active and Passive 3D Vision Sensors: BumblebeeXB3 and Microsoft Kinect
    • Springer: Berlin, Germany
    • Beltran, D.; Basañez, L. A Comparison between Active and Passive 3D Vision Sensors: BumblebeeXB3 and Microsoft Kinect. In ROBOT2013: First Iberian Robotics Conference; Springer: Berlin, Germany, 2014; pp. 725–734.
    • (2014) ROBOT2013: First Iberian Robotics Conference , pp. 725-734
    • Beltran, D.1    Basañez, L.2
  • 28
    • 84919327893 scopus 로고    scopus 로고
    • Evaluation of the spatial resolution accuracy of the face tracking system for kinect for windows v1 and v2
    • Taipei, Taiwan, 20–24 November 2016
    • Amon, C.; Fuhrmann, F.; Graf, F. Evaluation of the spatial resolution accuracy of the face tracking system for kinect for windows v1 and v2. In Proceedings of the 6th Congress of the Alps Adria Acoustics Association, Taipei, Taiwan, 20–24 November 2016; pp. 16–17.
    • Proceedings of the 6Th Congress of the Alps Adria Acoustics Association , pp. 16-17
    • Amon, C.1    Fuhrmann, F.2    Graf, F.3
  • 29
    • 85018426331 scopus 로고    scopus 로고
    • Comparison of kinect v1 and v2 depth images in terms of accuracy and precision
    • Springer: Berlin, Germany
    • Wasenmüller, O.; Stricker, D. Comparison of kinect v1 and v2 depth images in terms of accuracy and precision. In Asian Conference on Computer Vision; Springer: Berlin, Germany, 2016; pp. 34–45.
    • (2016) Asian Conference on Computer Vision , pp. 34-45
    • Wasenmüller, O.1    Stricker, D.2
  • 30
    • 84960156008 scopus 로고    scopus 로고
    • Analysis and evaluation between the first and the second generation of RGB-D sensors
    • Diaz, M.G.; Tombari, F.; Rodriguez-Gonzalvez, P.; Gonzalez-Aguilera, D. Analysis and evaluation between the first and the second generation of RGB-D sensors. IEEE Sens. J. 2015, 15, 6507–6516. [CrossRef]
    • (2015) IEEE Sens. J. , vol.15 , pp. 6507-6516
    • Diaz, M.G.1    Tombari, F.2    Rodriguez-Gonzalvez, P.3    Gonzalez-Aguilera, D.4
  • 32
    • 84891357486 scopus 로고    scopus 로고
    • Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: Analysis and comparison
    • Kazmi, W.; Foix, S.; Alenyà, G.; Andersen, H.J. Indoor and outdoor depth imaging of leaves with time-of-flight and stereo vision sensors: Analysis and comparison. ISPRS J. Photogramm. Remote Sens. 2014, 88, 128–146. [CrossRef]
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.88 , pp. 128-146
    • Kazmi, W.1    Foix, S.2    Alenyà, G.3    Andersen, H.J.4
  • 33
    • 85021648070 scopus 로고    scopus 로고
    • On the performance of the Intel SR300 depth camera: Metrological and critical characterization
    • Carfagni, M.; Furferi, R.; Governi, L.; Servi, M.; Uccheddu, F.; Volpe, Y. On the performance of the Intel SR300 depth camera: metrological and critical characterization. IEEE Sens. J. 2017, 17, 4508–4519. [CrossRef]
    • (2017) IEEE Sens. J. , vol.17 , pp. 4508-4519
    • Carfagni, M.1    Furferi, R.2    Governi, L.3    Servi, M.4    Uccheddu, F.5    Volpe, Y.6
  • 36
    • 84947422172 scopus 로고    scopus 로고
    • Validation of plant part measurements using a 3D reconstruction method suitable for high-throughput seedling phenotyping
    • Golbach, F.; Kootstra, G.; Damjanovic, S.; Otten, G.; van de Zedde, R. Validation of plant part measurements using a 3D reconstruction method suitable for high-throughput seedling phenotyping. Mach. Vis. Appl. 2016, 27, 663–680. [CrossRef]
    • (2016) Mach. Vis. Appl. , vol.27 , pp. 663-680
    • Golbach, F.1    Kootstra, G.2    Damjanovic, S.3    Otten, G.4    van de Zedde, R.5
  • 37
    • 84906344142 scopus 로고    scopus 로고
    • Learning rich features from RGB-D images for object detection and segmentation
    • Zurich, Switzerland, 6–12 September 2014
    • Gupta, S.; Girshick, R.; Arbeláez, P.; Malik, J. Learning rich features from RGB-D images for object detection and segmentation. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 345–360.
    • Proceedings of the European Conference on Computer Vision , pp. 345-360
    • Gupta, S.1    Girshick, R.2    Arbeláez, P.3    Malik, J.4
  • 38
    • 85041526840 scopus 로고    scopus 로고
    • Point Cloud Based Approach to Stem Width Extraction of Sorghum
    • Jin, J.; Zakhor, A. Point Cloud Based Approach to Stem Width Extraction of Sorghum. Electron. Imaging 2017, 2017, 148–155. [CrossRef]
    • (2017) Electron. Imaging , vol.2017 , pp. 148-155
    • Jin, J.1    Zakhor, A.2
  • 39
    • 85019258369 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell. , vol.39 , pp. 1137-1149
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 40
    • 84946574132 scopus 로고    scopus 로고
    • Model-Based Approach to High Performance Phenotyping
    • Shaker Verlag: Herzogenrath, Germany
    • Steinhage, V.; Schöler, F.; Balfer, J. A Model-Based Approach to High Performance Phenotyping. In EnviroInfo; Shaker Verlag: Herzogenrath, Germany, 2012; pp. 303–310.
    • (2012) Enviroinfo , pp. 303-310
    • Steinhage, V.1    Schöler, F.2    Balfer, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.