-
1
-
-
70349258504
-
Sowing date affect spikelet number and grain yield of durum wheat
-
Sept
-
I. Arduini, L. Ercoli, M. Mariotti, and A. Masoni. Sowing date affect spikelet number and grain yield of durum wheat. Cereal Research Communications, 37(3):469-478, Sept. 2009.
-
(2009)
Cereal Research Communications
, vol.37
, Issue.3
, pp. 469-478
-
-
Arduini, I.1
Ercoli, L.2
Mariotti, M.3
Masoni, A.4
-
2
-
-
61349084770
-
Ez-rhizo: Integrated software for the fast and accurate measurement of root system architecture
-
P. Armengaud, K. Zambaux, A. Hills, R. Sulpice, R. J. Pattison, M. R. Blatt, and A. Amtmann. Ez-rhizo: integrated software for the fast and accurate measurement of root system architecture. The Plant Journal, 57(5):945-956, 2009.
-
(2009)
The Plant Journal
, vol.57
, Issue.5
, pp. 945-956
-
-
Armengaud, P.1
Zambaux, K.2
Hills, A.3
Sulpice, R.4
Pattison, R.J.5
Blatt, M.R.6
Amtmann, A.7
-
3
-
-
85019856916
-
Leafnet: A computer vision system for automatic plant species identification
-
P. Barr, B. C. Stver, K. F. Mller, and V. Steinhage. Leafnet: A computer vision system for automatic plant species identification. Ecological Informatics, 40:50 - 56, 2017.
-
(2017)
Ecological Informatics
, vol.40
, pp. 50-56
-
-
Barr, P.1
Stver, B.C.2
Mller, K.F.3
Steinhage, V.4
-
4
-
-
0000107385
-
Photosynthesis and transpiration in leaves and ears of wheat and barley varieties
-
Mar
-
A. Blum. Photosynthesis and Transpiration in Leaves and Ears of Wheat and Barley Varieties. Journal of Experimental Botany, 36(3):432-440, Mar. 1985.
-
(1985)
Journal of Experimental Botany
, vol.36
, Issue.3
, pp. 432-440
-
-
Blum, A.1
-
6
-
-
84932111493
-
Development of a wireless computer vision instrument to detect biotic stress in wheat
-
J. J. Casanova, S. A. Shaughnessy, S. R. Evett, and C. M. Rush. Development of a wireless computer vision instrument to detect biotic stress in wheat. Sensors, 14(9):17753-17769, 2014.
-
(2014)
Sensors
, vol.14
, Issue.9
, pp. 17753-17769
-
-
Casanova, J.J.1
Shaughnessy, S.A.2
Evett, S.R.3
Rush, C.M.4
-
7
-
-
49149095661
-
Infield triticum aestivum ear counting using colourtexture image analysis
-
F. Cointault, D. Guerin, J. Guillemin, and B. Chopinet. Infield triticum aestivum ear counting using colourtexture image analysis. New Zealand Journal of Crop and Horticultural Science, 36(2):117-130, 2008.
-
(2008)
New Zealand Journal of Crop and Horticultural Science
, vol.36
, Issue.2
, pp. 117-130
-
-
Cointault, F.1
Guerin, D.2
Guillemin, J.3
Chopinet, B.4
-
8
-
-
68249155323
-
High-throughput quantification of root growth using a novel image-analysis tool
-
A. French, S. Ubeda-Toḿas, T. J. Holman, M. J. Bennett, and T. Pridmore. High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiology, 150(4):1784-1795, 2009.
-
(2009)
Plant Physiology
, vol.150
, Issue.4
, pp. 1784-1795
-
-
French, A.1
Ubeda-Toḿas, S.2
Holman, T.J.3
Bennett, M.J.4
Pridmore, T.5
-
9
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580-587, 2014.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 580-587
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
11
-
-
84924917101
-
Automated characterization of flowering dynamics in rice using field-acquired time-series rgb images
-
W. Guo, T. Fukatsu, and S. Ninomiya. Automated characterization of flowering dynamics in rice using field-acquired time-series rgb images. Plant Methods, 11(1):7, 2015.
-
(2015)
Plant Methods
, vol.11
, Issue.1
, pp. 7
-
-
Guo, W.1
Fukatsu, T.2
Ninomiya, S.3
-
13
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770-778, 2016.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
14
-
-
84969577659
-
Plant density effect on grain number and weight of two winter wheat cultivars at different spikelet and grain positions
-
05
-
Y. Li, Z. Cui, Y. Ni, M. Zheng, D. Yang, M. Jin, J. Chen, Z. Wang, and Y. Yin. Plant density effect on grain number and weight of two winter wheat cultivars at different spikelet and grain positions. PLOS ONE, 11(5):1-15, 05 2016.
-
(2016)
PLOS ONE
, vol.11
, Issue.5
, pp. 1-15
-
-
Li, Y.1
Cui, Z.2
Ni, Y.3
Zheng, M.4
Yang, D.5
Jin, M.6
Chen, J.7
Wang, Z.8
Yin, Y.9
-
15
-
-
85019693546
-
Image analysis in plant sciences: Publish then perish
-
G. Lobet. Image analysis in plant sciences: Publish then perish. Trends in Plant Science, 2017.
-
(2017)
Trends in Plant Science
-
-
Lobet, G.1
-
17
-
-
84989797716
-
Utilizing machine learning approaches to improve the prediction of leaf counts and individual leaf segmentation of rosette plant images
-
H. S. S. A. Tsaftaris and T. Pridmore, editors, BMVA Press, September
-
J.-M. Pape and C. Klukas. Utilizing machine learning approaches to improve the prediction of leaf counts and individual leaf segmentation of rosette plant images. In H. S. S. A. Tsaftaris and T. Pridmore, editors, Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP), pages 31-312. BMVA Press, September 2015.
-
(2015)
Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP)
, pp. 31-312
-
-
Pape, J.-M.1
Klukas, C.2
-
18
-
-
85020120388
-
-
bioRxiv
-
M. P. Pound, A. J. Burgess, M. H. Wilson, J. A. Atkinson, M. Griffiths, A. S. Jackson, A. Bulat, G. Tzimiropoulos, D. M. Wells, E. H. Murchie, et al. Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. bioRxiv, page 053033, 2016.
-
(2016)
Deep Machine Learning Provides State-of-the-art Performance in Image-based Plant Phenotyping
, pp. 053033
-
-
Pound, M.P.1
Burgess, A.J.2
Wilson, M.H.3
Atkinson, J.A.4
Griffiths, M.5
Jackson, A.S.6
Bulat, A.7
Tzimiropoulos, G.8
Wells, D.M.9
Murchie, E.H.10
-
19
-
-
84969951477
-
Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat
-
Apr
-
G. J. Rebetzke, D. G. Bonnett, and M. P. Reynolds. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. Journal of Experimental Botany, 67(9):2573-2586, Apr. 2016.
-
(2016)
Journal of Experimental Botany
, vol.67
, Issue.9
, pp. 2573-2586
-
-
Rebetzke, G.J.1
Bonnett, D.G.2
Reynolds, M.P.3
-
21
-
-
85014861254
-
Automated method to determine two critical growth stages of wheat: Heading and flowering
-
P. Sadeghi-Tehran, K. Sabermanesh, N. Virlet, and M. J. Hawkesford. Automated method to determine two critical growth stages of wheat: Heading and flowering. Frontiers in Plant Science, 8:252, 2017.
-
(2017)
Frontiers in Plant Science
, vol.8
, pp. 252
-
-
Sadeghi-Tehran, P.1
Sabermanesh, K.2
Virlet, N.3
Hawkesford, M.J.4
-
22
-
-
84958049448
-
Machine learning for high-throughput stress phenotyping in plants
-
A. Singh, B. Ganapathysubramanian, A. K. Singh, and S. Sarkar. Machine learning for high-throughput stress phenotyping in plants. Trends in plant science, 21(2):110-124, 2016.
-
(2016)
Trends in Plant Science
, vol.21
, Issue.2
, pp. 110-124
-
-
Singh, A.1
Ganapathysubramanian, B.2
Singh, A.K.3
Sarkar, S.4
-
23
-
-
85046297958
-
-
bioRxiv
-
S. Taghavi Namin, M. Esmaeilzadeh, M. Najafi, T. B. Brown, and J. O. Borevitz. Deep phenotyping: Deep learning for temporal phenotype/genotype classification. bioRxiv, 2017.
-
(2017)
Deep Phenotyping: Deep Learning for Temporal Phenotype/genotype Classification
-
-
Namin, S.T.1
Esmaeilzadeh, M.2
Najafi, M.3
Brown, T.B.4
Borevitz, J.O.5
-
24
-
-
84997343143
-
Machine learning for plant phenotyping needs image processing
-
S. A. Tsaftaris, M. Minervini, and H. Scharr. Machine learning for plant phenotyping needs image processing. Trends in plant science, 21(12):989-991, 2016.
-
(2016)
Trends in Plant Science
, vol.21
, Issue.12
, pp. 989-991
-
-
Tsaftaris, S.A.1
Minervini, M.2
Scharr, H.3
-
25
-
-
84921900726
-
-
M. Wahabzada, A.-K. Mahlein, C. Bauckhage, U. Steiner, E.-C. Oerke, and K. Kersting. Metro maps of plant disease dynamicsautomated mining of differences using hyperspectral images. 10(1):e0116902.
-
Metro Maps of Plant Disease Dynamicsautomated Mining of Differences Using Hyperspectral Images
, vol.10
, Issue.1
, pp. e0116902
-
-
Wahabzada, M.1
Mahlein, A.-K.2
Bauckhage, C.3
Steiner, U.4
Oerke, E.-C.5
Kersting, K.6
-
26
-
-
0036801434
-
Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment
-
Oct
-
I. F. Wardlaw. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Annals of Botany, 90(4):469-476, Oct. 2002.
-
(2002)
Annals of Botany
, vol.90
, Issue.4
, pp. 469-476
-
-
Wardlaw, I.F.1
-
27
-
-
84962310740
-
Computer vision cracks the leaf code
-
P. Wilf, S. Zhang, S. Chikkerur, S. A. Little, S. L. Wing, and T. Serre. Computer vision cracks the leaf code. Proceedings of the National Academy of Sciences, 113(12):3305-3310, 2016.
-
(2016)
Proceedings of the National Academy of Sciences
, vol.113
, Issue.12
, pp. 3305-3310
-
-
Wilf, P.1
Zhang, S.2
Chikkerur, S.3
Little, S.A.4
Wing, S.L.5
Serre, T.6
|