메뉴 건너뛰기




Volumn 2018-January, Issue , 2017, Pages 2055-2063

Deep learning for multi-task plant phenotyping

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CROPS; LARGE DATASET;

EID: 85046259156     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2017.241     Document Type: Conference Paper
Times cited : (159)

References (27)
  • 1
    • 70349258504 scopus 로고    scopus 로고
    • Sowing date affect spikelet number and grain yield of durum wheat
    • Sept
    • I. Arduini, L. Ercoli, M. Mariotti, and A. Masoni. Sowing date affect spikelet number and grain yield of durum wheat. Cereal Research Communications, 37(3):469-478, Sept. 2009.
    • (2009) Cereal Research Communications , vol.37 , Issue.3 , pp. 469-478
    • Arduini, I.1    Ercoli, L.2    Mariotti, M.3    Masoni, A.4
  • 3
    • 85019856916 scopus 로고    scopus 로고
    • Leafnet: A computer vision system for automatic plant species identification
    • P. Barr, B. C. Stver, K. F. Mller, and V. Steinhage. Leafnet: A computer vision system for automatic plant species identification. Ecological Informatics, 40:50 - 56, 2017.
    • (2017) Ecological Informatics , vol.40 , pp. 50-56
    • Barr, P.1    Stver, B.C.2    Mller, K.F.3    Steinhage, V.4
  • 4
    • 0000107385 scopus 로고
    • Photosynthesis and transpiration in leaves and ears of wheat and barley varieties
    • Mar
    • A. Blum. Photosynthesis and Transpiration in Leaves and Ears of Wheat and Barley Varieties. Journal of Experimental Botany, 36(3):432-440, Mar. 1985.
    • (1985) Journal of Experimental Botany , vol.36 , Issue.3 , pp. 432-440
    • Blum, A.1
  • 6
    • 84932111493 scopus 로고    scopus 로고
    • Development of a wireless computer vision instrument to detect biotic stress in wheat
    • J. J. Casanova, S. A. Shaughnessy, S. R. Evett, and C. M. Rush. Development of a wireless computer vision instrument to detect biotic stress in wheat. Sensors, 14(9):17753-17769, 2014.
    • (2014) Sensors , vol.14 , Issue.9 , pp. 17753-17769
    • Casanova, J.J.1    Shaughnessy, S.A.2    Evett, S.R.3    Rush, C.M.4
  • 8
    • 68249155323 scopus 로고    scopus 로고
    • High-throughput quantification of root growth using a novel image-analysis tool
    • A. French, S. Ubeda-Toḿas, T. J. Holman, M. J. Bennett, and T. Pridmore. High-throughput quantification of root growth using a novel image-analysis tool. Plant Physiology, 150(4):1784-1795, 2009.
    • (2009) Plant Physiology , vol.150 , Issue.4 , pp. 1784-1795
    • French, A.1    Ubeda-Toḿas, S.2    Holman, T.J.3    Bennett, M.J.4    Pridmore, T.5
  • 11
    • 84924917101 scopus 로고    scopus 로고
    • Automated characterization of flowering dynamics in rice using field-acquired time-series rgb images
    • W. Guo, T. Fukatsu, and S. Ninomiya. Automated characterization of flowering dynamics in rice using field-acquired time-series rgb images. Plant Methods, 11(1):7, 2015.
    • (2015) Plant Methods , vol.11 , Issue.1 , pp. 7
    • Guo, W.1    Fukatsu, T.2    Ninomiya, S.3
  • 14
    • 84969577659 scopus 로고    scopus 로고
    • Plant density effect on grain number and weight of two winter wheat cultivars at different spikelet and grain positions
    • 05
    • Y. Li, Z. Cui, Y. Ni, M. Zheng, D. Yang, M. Jin, J. Chen, Z. Wang, and Y. Yin. Plant density effect on grain number and weight of two winter wheat cultivars at different spikelet and grain positions. PLOS ONE, 11(5):1-15, 05 2016.
    • (2016) PLOS ONE , vol.11 , Issue.5 , pp. 1-15
    • Li, Y.1    Cui, Z.2    Ni, Y.3    Zheng, M.4    Yang, D.5    Jin, M.6    Chen, J.7    Wang, Z.8    Yin, Y.9
  • 15
    • 85019693546 scopus 로고    scopus 로고
    • Image analysis in plant sciences: Publish then perish
    • G. Lobet. Image analysis in plant sciences: Publish then perish. Trends in Plant Science, 2017.
    • (2017) Trends in Plant Science
    • Lobet, G.1
  • 16
  • 17
    • 84989797716 scopus 로고    scopus 로고
    • Utilizing machine learning approaches to improve the prediction of leaf counts and individual leaf segmentation of rosette plant images
    • H. S. S. A. Tsaftaris and T. Pridmore, editors, BMVA Press, September
    • J.-M. Pape and C. Klukas. Utilizing machine learning approaches to improve the prediction of leaf counts and individual leaf segmentation of rosette plant images. In H. S. S. A. Tsaftaris and T. Pridmore, editors, Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP), pages 31-312. BMVA Press, September 2015.
    • (2015) Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP) , pp. 31-312
    • Pape, J.-M.1    Klukas, C.2
  • 19
    • 84969951477 scopus 로고    scopus 로고
    • Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat
    • Apr
    • G. J. Rebetzke, D. G. Bonnett, and M. P. Reynolds. Awns reduce grain number to increase grain size and harvestable yield in irrigated and rainfed spring wheat. Journal of Experimental Botany, 67(9):2573-2586, Apr. 2016.
    • (2016) Journal of Experimental Botany , vol.67 , Issue.9 , pp. 2573-2586
    • Rebetzke, G.J.1    Bonnett, D.G.2    Reynolds, M.P.3
  • 24
    • 84997343143 scopus 로고    scopus 로고
    • Machine learning for plant phenotyping needs image processing
    • S. A. Tsaftaris, M. Minervini, and H. Scharr. Machine learning for plant phenotyping needs image processing. Trends in plant science, 21(12):989-991, 2016.
    • (2016) Trends in Plant Science , vol.21 , Issue.12 , pp. 989-991
    • Tsaftaris, S.A.1    Minervini, M.2    Scharr, H.3
  • 26
    • 0036801434 scopus 로고    scopus 로고
    • Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment
    • Oct
    • I. F. Wardlaw. Interaction between drought and chronic high temperature during kernel filling in wheat in a controlled environment. Annals of Botany, 90(4):469-476, Oct. 2002.
    • (2002) Annals of Botany , vol.90 , Issue.4 , pp. 469-476
    • Wardlaw, I.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.