메뉴 건너뛰기




Volumn 18, Issue , 2018, Pages

SBLC: A hybrid model for disease named entity recognition based on semantic bidirectional LSTMs and conditional random fields

Author keywords

Biomedical informatics; Machine learning; Neural networks; Text mining

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DATA MINING; HUMAN; MACHINE LEARNING; MEDICAL INFORMATICS; SEMANTICS;

EID: 85058035767     PISSN: None     EISSN: 14726947     Source Type: Journal    
DOI: 10.1186/s12911-018-0690-y     Document Type: Article
Times cited : (22)

References (36)
  • 1
    • 84863245800 scopus 로고    scopus 로고
    • Linking multiple disease-related resources through UMLS
    • New York
    • A. Névéol, J. Li, and Z. Lu. Linking multiple disease-related resources through UMLS. ACM SIGHIT International Health Informatics Symposium. New York; 2012. p. 767-772.
    • (2012) ACM SIGHIT International Health Informatics Symposium , pp. 767-772
    • Névéol, A.1
  • 2
    • 84895437465 scopus 로고    scopus 로고
    • NCBI disease corpus: A resource for disease name recognition and concept normalization
    • Dogan RI, Leaman R, Lu Z. NCBI disease corpus: a resource for disease name recognition and concept normalization. J Biomed Inform. 2014;47:1-10.
    • (2014) J Biomed Inform , vol.47 , pp. 1-10
    • Dogan, R.I.1    Leaman, R.2    Lu, Z.3
  • 3
    • 84890064920 scopus 로고    scopus 로고
    • DNormL: Disease name normalization with pairwise learning to rank
    • 1:CAS:528:DC%2BC3sXhslWnsLbP
    • Leaman R, Doǧan RI, Lu Z. DNormL: Disease name normalization with pairwise learning to rank. Bioinformatics. 2013;29(22):2909-17.
    • (2013) Bioinformatics , vol.29 , Issue.22 , pp. 2909-2917
    • Leaman, R.1    Doǧan, R.I.2    Lu, Z.3
  • 4
    • 50649122567 scopus 로고    scopus 로고
    • Extracting information from textual documents in the electronic health record: A review of recent research
    • Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF, et al. Extracting information from textual documents in the electronic health record: a review of recent research. IMIA Yearbook. 2008;47(Suppl 1):128-44.
    • (2008) IMIA Yearbook , vol.47 , pp. 128-144
    • Meystre, S.M.1    Savova, G.K.2    Kipper-Schuler, K.C.3    Hurdle, J.F.4
  • 5
    • 84901001907 scopus 로고    scopus 로고
    • Chemical named entities recognition: A review on approaches and applications
    • Eltyeb S, Salim N. Chemical named entities recognition: a review on approaches and applications. J Cheminformatics. 2014;6(1):17.
    • (2014) J Cheminformatics , vol.6 , Issue.1 , pp. 17
    • Eltyeb, S.1    Salim, N.2
  • 6
    • 84870336493 scopus 로고    scopus 로고
    • A systematic review of named entity recognition in biomedical texts
    • Goulart RRV, de Lima VLS, Xavier CC. A systematic review of named entity recognition in biomedical texts. J Braz Comput Soc. 2011;17(2):103-16.
    • (2011) J Braz Comput Soc , vol.17 , Issue.2 , pp. 103-116
    • Goulart, R.R.V.1    De Lima, V.L.S.2    Xavier, C.C.3
  • 7
    • 77955080124 scopus 로고    scopus 로고
    • Automatic de-identification of textual documents in the electronic health record: A review of recent research
    • Meystre SM, Friedlin FJ, South BR, Shen S, Samore MH. Automatic de-identification of textual documents in the electronic health record: a review of recent research. BMC Med Res Methodol. 2010;10(1):70.
    • (2010) BMC Med Res Methodol , vol.10 , Issue.1 , pp. 70
    • Meystre, S.M.1    Friedlin, F.J.2    South, B.R.3    Shen, S.4    Samore, M.H.5
  • 8
    • 46149102929 scopus 로고    scopus 로고
    • Seeking a new biology through text mining
    • 1:CAS:528:DC%2BD1cXoslyjt7s%3D
    • Rzhetsky A, Seringhaus M, Gerstein M. Seeking a new biology through text mining. Cell. 2008;134(1):9-13.
    • (2008) Cell , vol.134 , Issue.1 , pp. 9-13
    • Rzhetsky, A.1    Seringhaus, M.2    Gerstein, M.3
  • 10
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • 1:STN:280:DyaK1c%2FhvVahsQ%3D%3D
    • Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735-80.
    • (1997) Neural Comput , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 13
    • 0345863927 scopus 로고    scopus 로고
    • The unified medical language system (UMLS): Integrating biomedical terminology
    • Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32(suppl 1):267-70.
    • (2004) Nucleic Acids Res , vol.32 , pp. 267-270
    • Bodenreider, O.1
  • 14
    • 0035752429 scopus 로고    scopus 로고
    • Effective mapping of biomedical text to the UMLS Metathesaurus: The MetaMap program
    • A. R. Aronson. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proc of the AMIA Symposium 2001; p.17.
    • (2001) Proc of the AMIA Symposium , pp. 17
    • Aronson, A.R.1
  • 15
    • 78149490620 scopus 로고    scopus 로고
    • Mayo clinical text analysis and knowledge extraction system (cTAKES): Architecture, component evaluation and applications
    • Savova GK, et al. Mayo clinical text analysis and knowledge extraction system (cTAKES): architecture, component evaluation and applications. J Am Med Inform Assoc. 2010;17(5):507-13.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.5 , pp. 507-513
    • Savova, G.K.1
  • 16
    • 77955291899 scopus 로고    scopus 로고
    • Automated evaluation of electronic discharge notes to assess quality of care for cardiovascular diseases using medical language extraction and encoding system (MedLEE)
    • Chiang J-H, Lin J-W, Yang C-W. Automated evaluation of electronic discharge notes to assess quality of care for cardiovascular diseases using medical language extraction and encoding system (MedLEE). J Am Med Inform Assoc. 2010;17(3):245-52.
    • (2010) J Am Med Inform Assoc , vol.17 , Issue.3 , pp. 245-252
    • Chiang, J.-H.1    Lin, J.-W.2    Yang, C.-W.3
  • 18
    • 0038154028 scopus 로고    scopus 로고
    • Understanding' medical school curriculum content using KnowledgeMap
    • Denny JC, Smithers JD, Miller RA, Spickard A III. Understanding' medical school curriculum content using KnowledgeMap. J Am Med Inform Assoc. 2003;10(4):351-62.
    • (2003) J Am Med Inform Assoc , vol.10 , Issue.4 , pp. 351-362
    • Denny, J.C.1    Smithers, J.D.2    Miller, R.A.3    Spickard, A.4
  • 19
    • 33748046130 scopus 로고    scopus 로고
    • Extracting principal diagnosis, co-morbidity and smoking status for asthma research: Evaluation of a natural language processing system
    • Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R. Extracting principal diagnosis, co-morbidity and smoking status for asthma research: evaluation of a natural language processing system. BMC Med Inform Decis Mak. 2006;6(1):30.
    • (2006) BMC Med Inform Decis Mak , vol.6 , Issue.1 , pp. 30
    • Zeng, Q.T.1    Goryachev, S.2    Weiss, S.3    Sordo, M.4    Murphy, S.N.5    Lazarus, R.6
  • 20
    • 0033927616 scopus 로고    scopus 로고
    • Medical subject headings (MeSH)
    • 1:STN:280:DC%2BD3M%2Fjs1Ggtg%3D%3D
    • Lipscomb CE. Medical subject headings (MeSH). Bull Med Libr Assoc. 2000;88(3):265.
    • (2000) Bull Med Libr Assoc , vol.88 , Issue.3 , pp. 265
    • Lipscomb, C.E.1
  • 21
    • 13444266370 scopus 로고    scopus 로고
    • Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders
    • Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33(suppl-1):514-7.
    • (2005) Nucleic Acids Res , vol.33 , pp. 514-517
    • Hamosh, A.1    Scott, A.F.2    Amberger, J.S.3    Bocchini, C.A.4    McKusick, V.A.5
  • 22
    • 84992220733 scopus 로고    scopus 로고
    • TaggerOne: Joint named entity recognition and normalization with semi-Markov models
    • 1:CAS:528:DC%2BC2sXhtFGlurbN
    • Leaman R, Lu Z. TaggerOne: Joint named entity recognition and normalization with semi-Markov models. Bioinformatics. 2016;32(18):2839-46.
    • (2016) Bioinformatics , vol.32 , Issue.18 , pp. 2839-2846
    • Leaman, R.1    Lu, Z.2
  • 25
    • 85019375942 scopus 로고    scopus 로고
    • Character-level neural network for biomedical named entity recognition
    • Gridach M. Character-level neural network for biomedical named entity recognition. J Biomed Inform. 2017;70:85-91.
    • (2017) J Biomed Inform , vol.70 , pp. 85-91
    • Gridach, M.1
  • 31
    • 84944081343 scopus 로고    scopus 로고
    • Hadoop recognition of biomedical named entity using conditional random fields
    • Li K, et al. Hadoop recognition of biomedical named entity using conditional random fields. IEEE Trans. Parallel Distrib Syst. 2015;26(11):3040-51.
    • (2015) IEEE Trans. Parallel Distrib Syst , vol.26 , Issue.11 , pp. 3040-3051
    • Li, K.1
  • 33
    • 55249111767 scopus 로고    scopus 로고
    • Abbreviation definition identification based on automatic precision estimates
    • Sohn S, Comeau DC, Kim W, Wilbur WJ. Abbreviation definition identification based on automatic precision estimates. BMC Bioinformatics. 2008;9:402-11.
    • (2008) BMC Bioinformatics , vol.9 , pp. 402-411
    • Sohn, S.1    Comeau, D.C.2    Kim, W.3    Wilbur, W.J.4
  • 34
    • 85029530575 scopus 로고    scopus 로고
    • A bidirectional LSTM and conditional random fields approach to medical named entity recognition
    • Xu K, Zhou Z, Hao T, Liu W. A bidirectional LSTM and conditional random fields approach to medical named entity recognition. Adv Intell Syst Comput. 2018;639:355-65.
    • (2018) Adv Intell Syst Comput , vol.639 , pp. 355-365
    • Xu, K.1    Zhou, Z.2    Hao, T.3    Liu, W.4
  • 35
    • 84938325545 scopus 로고    scopus 로고
    • SimConcept: A hybrid approach for simplifying composite named entities in biomedical text
    • Wei CH, Leaman R, Lu Z. SimConcept: a hybrid approach for simplifying composite named entities in biomedical text. IEEE J Biomed Health Inform. 2015;19(4):1385-91.
    • (2015) IEEE J Biomed Health Inform , vol.19 , Issue.4 , pp. 1385-1391
    • Wei, C.H.1    Leaman, R.2    Lu, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.