메뉴 건너뛰기




Volumn , Issue , 2008, Pages 501-551

Sensitivity analysis for incomplete data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85057497084     PISSN: None     EISSN: None     Source Type: Book    
DOI: None     Document Type: Chapter
Times cited : (7)

References (82)
  • 1
    • 84936025682 scopus 로고
    • Estimation of linear models with incomplete data
    • Allison, P. D. (1987). Estimation of linear models with incomplete data. Sociology Methodology 17, 71–103.
    • (1987) Sociology Methodology , vol.17 , pp. 71-103
    • Allison, P.D.1
  • 2
    • 0001885521 scopus 로고
    • Regression analysis for categorical variables with outcome subject to non-ignorable non-response
    • Baker, S. G. and Laird, N. M. (1988). Regression analysis for categorical variables with outcome subject to non-ignorable non-response. Journal of the American Statistical Association 83, 62–69.
    • (1988) Journal of the American Statistical Association , vol.83 , pp. 62-69
    • Baker, S.G.1    Laird, N.M.2
  • 3
    • 0026550210 scopus 로고
    • Closed-form estimates for missing counts in two-way contingency tables
    • Baker, S. G., Rosenberger, W. F., and DerSimonian, R. (1992). Closed-form estimates for missing counts in two-way contingency tables. Statistics in Medicine 11, 643–657.
    • (1992) Statistics in Medicine , vol.11 , pp. 643-657
    • Baker, S.G.1    Rosenberger, W.F.2    Dersimonian, R.3
  • 4
    • 63849168870 scopus 로고    scopus 로고
    • A latent-class mixture model for incomplete longitudinal Gaussian data
    • To appear
    • Beunckens, C., Molenberghs, G., Verbeke, G., and Mallinckrodt, C. (2007). A latent-class mixture model for incomplete longitudinal Gaussian data. Biometrics. To appear.
    • (2007) Biometrics
    • Beunckens, C.1    Molenberghs, G.2    Verbeke, G.3    Mallinckrodt, C.4
  • 5
    • 0000416816 scopus 로고    scopus 로고
    • Detecting parameter redundancy
    • Catchpole, E. A. and Morgan, B. J. T. (1997). Detecting parameter redundancy. Biometrika 84, 187–196.
    • (1997) Biometrika , vol.84 , pp. 187-196
    • Catchpole, E.A.1    Morgan, B.J.T.2
  • 6
    • 0001178861 scopus 로고    scopus 로고
    • Estimation in parameter-redundant models
    • Catchpole, E. A., Morgan, B. J. T., and Freeman, S. N. (1998). Estimation in parameter-redundant models. Biometrika 85, 462–468.
    • (1998) Biometrika , vol.85 , pp. 462-468
    • Catchpole, E.A.1    Morgan, B.J.T.2    Freeman, S.N.3
  • 11
    • 4243828610 scopus 로고
    • Informative drop-out in longitudinal data analysis (With discussion)
    • Diggle, P. J. and Kenward, M. G. (1994). Informative drop-out in longitudinal data analysis (with discussion). Applied Statistics 43, 49–93.
    • (1994) Applied Statistics , vol.43 , pp. 49-93
    • Diggle, P.J.1    Kenward, M.G.2
  • 12
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty (With discussion)
    • Draper, D. (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society, Series B 57, 45–97.
    • (1995) Journal of the Royal Statistical Society, Series B , vol.57 , pp. 45-97
    • Draper, D.1
  • 13
    • 0041175330 scopus 로고    scopus 로고
    • The Muscatine children’s obesity data reanalysed using pattern mixture models
    • Ekholm, A. and Skinner, C. (1998). The Muscatine children’s obesity data reanalysed using pattern mixture models. Applied Statistics 47, 251–263.
    • (1998) Applied Statistics , vol.47 , pp. 251-263
    • Ekholm, A.1    Skinner, C.2
  • 15
    • 0029028456 scopus 로고
    • An approximate generalized linear model with random effects for informative missing data
    • Follmann, D. and Wu, M. (1995). An approximate generalized linear model with random effects for informative missing data. Biometrics 51, 151–168.
    • (1995) Biometrics , vol.51 , pp. 151-168
    • Follmann, D.1    Wu, M.2
  • 16
    • 0002337950 scopus 로고    scopus 로고
    • Model-based inference for categorical survey data subject to non-ignorable non-response
    • Foster, J. J. and Smith, P. W. F. (1998). Model-based inference for categorical survey data subject to non-ignorable non-response. Journal of the Royal Statistical Society, Series B 60, 57–70.
    • (1998) Journal of the Royal Statistical Society, Series B , vol.60 , pp. 57-70
    • Foster, J.J.1    Smith, P.W.F.2
  • 17
    • 15044358532 scopus 로고    scopus 로고
    • Multiple imputation for model checking: Completed-data plots with missing and latent data
    • Gelman, A., Van Mechelen, I., Verbeke, G., Heitjan, D. F., and Meulders, M. (2005). Multiple imputation for model checking: Completed-data plots with missing and latent data. Biometrics 61, 74–85.
    • (2005) Biometrics , vol.61 , pp. 74-85
    • Gelman, A.1    Van Mechelen, I.2    Verbeke, G.3    Heitjan, D.F.4    Meulders, M.5
  • 18
    • 0003129721 scopus 로고
    • Selection modelling versus mixture modelling with non-ignorable nonresponse
    • H. Wainer (ed.), New York: Springer-Verlag
    • Glynn, R. J., Laird, N. M., and Rubin, D. B. (1986). Selection modelling versus mixture modelling with non-ignorable nonresponse. In H. Wainer (ed.), Drawing Inferences from Self Selected Samples, pp. 115–142. New York: Springer-Verlag.
    • (1986) Drawing Inferences from Self Selected Samples , pp. 115-142
    • Glynn, R.J.1    Laird, N.M.2    Rubin, D.B.3
  • 19
    • 0001766028 scopus 로고
    • The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models
    • Heckman, J. J. (1976). The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models. Annals of Economic and Social Measurement 5, 475–492.
    • (1976) Annals of Economic and Social Measurement , vol.5 , pp. 475-492
    • Heckman, J.J.1
  • 20
    • 0002105479 scopus 로고    scopus 로고
    • Application of random-effects pattern-mixture models for missing data in longitudinal studies
    • Hedeker, D. and Gibbons, R. D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods 2, 64–78.
    • (1997) Psychological Methods , vol.2 , pp. 64-78
    • Hedeker, D.1    Gibbons, R.D.2
  • 21
    • 0031032359 scopus 로고    scopus 로고
    • Mixture models for the joint distribution of repeated measures and event times
    • Hogan, J. W. and Laird, N. M. (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239–258.
    • (1997) Statistics in Medicine , vol.16 , pp. 239-258
    • Hogan, J.W.1    Laird, N.M.2
  • 22
    • 0033566769 scopus 로고    scopus 로고
    • Statistical principles for clinical trials: ICH Harmonised Tripartite Guideline
    • International Conference on Harmonisation E9 Expert Working Group
    • International Conference on Harmonisation E9 Expert Working Group (1999). Statistical principles for clinical trials: ICH Harmonised Tripartite Guideline. Statistics in Medicine 18, 1905–1942.
    • (1999) Statistics in Medicine , vol.18 , pp. 1905-1942
  • 25
    • 0022966316 scopus 로고
    • Unbalanced repeated measures models with structured covariance matrices
    • Jennrich, R. I. and Schluchter, M. D. (1986). Unbalanced repeated measures models with structured covariance matrices. Biometrics 42, 805–820.
    • (1986) Biometrics , vol.42 , pp. 805-820
    • Jennrich, R.I.1    Schluchter, M.D.2
  • 26
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with nonrandom dropout: An illustration of sensitivity
    • Kenward, M. G. (1998). Selection models for repeated measurements with nonrandom dropout: An illustration of sensitivity. Statistics in Medicine 17, 2723–2732.
    • (1998) Statistics in Medicine , vol.17 , pp. 2723-2732
    • Kenward, M.G.1
  • 28
    • 0032925431 scopus 로고    scopus 로고
    • Parametric models for incomplete continuous and categorical longitudinal studies data
    • Kenward, M. G. and Molenberghs, G. (1999) Parametric models for incomplete continuous and categorical longitudinal studies data. Statistical Methods in Medical Research 8, 51–83.
    • (1999) Statistical Methods in Medical Research , vol.8 , pp. 51-83
    • Kenward, M.G.1    Molenberghs, G.2
  • 29
    • 1542341537 scopus 로고    scopus 로고
    • Pattern-mixture models with proper time dependence
    • Kenward, M.G., Molenberghs, G., and Thijs, H. (2003). Pattern-mixture models with proper time dependence. Biometrika 90, 53–71.
    • (2003) Biometrika , vol.90 , pp. 53-71
    • Kenward, M.G.1    Molenberghs, G.2    Thijs, H.3
  • 30
    • 0002373852 scopus 로고
    • Discussion of “Informative dropout in longitudinal data analysis,” by P. J. Diggle and M. G. Kenward
    • Laird, N. M. (1994). Discussion of “Informative dropout in longitudinal data analysis,” by P. J. Diggle and M. G. Kenward. Applied Statistics 43, 84.
    • (1994) Applied Statistics , vol.43 , pp. 84
    • Laird, N.M.1
  • 31
    • 0031744665 scopus 로고    scopus 로고
    • Local influence in linear mixed models
    • Lesaffre, E. and Verbeke, G. (1998). Local influence in linear mixed models. Biometrics 54, 570–582.
    • (1998) Biometrics , vol.54 , pp. 570-582
    • Lesaffre, E.1    Verbeke, G.2
  • 33
    • 77956890002 scopus 로고
    • A class of pattern-mixture models for normal incomplete data
    • Little, R. J. A. (1994a). A class of pattern-mixture models for normal incomplete data. Biometrika 81, 471–483.
    • (1994) Biometrika , vol.81 , pp. 471-483
    • Little, R.J.A.1
  • 34
    • 0002373855 scopus 로고
    • Discussion of “Informative dropout in longitudinal data analysis,” by P. J. Diggle and M. G. Kenward
    • Little, R. J. A. (1994b). Discussion of “Informative dropout in longitudinal data analysis,” by P. J. Diggle and M. G. Kenward. Applied Statistics 43, 78.
    • (1994) Applied Statistics , vol.43 , pp. 78
    • Little, R.J.A.1
  • 35
    • 84950452119 scopus 로고
    • Modeling the drop-out mechanism in repeated-measures studies
    • Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies. Journal of the American Statistical Association 90, 1112–1121.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 1112-1121
    • Little, R.J.A.1
  • 37
    • 0029995115 scopus 로고    scopus 로고
    • Pattern-mixture models for multivariate incomplete data with covariates
    • Little, R. J. A. and Wang, Y. (1996). Pattern-mixture models for multivariate incomplete data with covariates. Biometrics 52, 98–111.
    • (1996) Biometrics , vol.52 , pp. 98-111
    • Little, R.J.A.1    Wang, Y.2
  • 38
    • 0030460385 scopus 로고    scopus 로고
    • Intent-to-treat analysis for longitudinal studies with drop-outs
    • Little, R. J. A. and Yau, L. (1996). Intent-to-treat analysis for longitudinal studies with drop-outs. Biometrics 52, 1324–1333.
    • (1996) Biometrics , vol.52 , pp. 1324-1333
    • Little, R.J.A.1    Yau, L.2
  • 39
    • 0026497615 scopus 로고
    • Modeling incomplete longitudinal and cross-sectional data using latent growth structural models
    • McArdle, J. J. and Hamagami, F. (1992). Modeling incomplete longitudinal and cross-sectional data using latent growth structural models. Experimental Aging Research 18, 145–166.
    • (1992) Experimental Aging Research , vol.18 , pp. 145-166
    • McArdle, J.J.1    Hamagami, F.2
  • 40
    • 0032885858 scopus 로고    scopus 로고
    • Selection models and pattern-mixture models for incomplete categorical data with covariates
    • Michiels, B., Molenberghs, G., and Lipsitz, S. R. (1999). Selection models and pattern-mixture models for incomplete categorical data with covariates. Biometrics 55, 978–983.
    • (1999) Biometrics , vol.55 , pp. 978-983
    • Michiels, B.1    Molenberghs, G.2    Lipsitz, S.R.3
  • 41
    • 0037197628 scopus 로고    scopus 로고
    • Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout
    • Michiels, B., Molenberghs, G., Bijnens, L., and Vangeneugden, T. (2002). Selection models and pattern-mixture models to analyze longitudinal quality of life data subject to dropout. Statistics in Medicine 21, 1023–1041.
    • (2002) Statistics in Medicine , vol.21 , pp. 1023-1041
    • Michiels, B.1    Molenberghs, G.2    Bijnens, L.3    Vangeneugden, T.4
  • 43
    • 0035650307 scopus 로고    scopus 로고
    • Sensitivity analysis for incomplete contingency tables: The Slovenian plebiscite case
    • Molenberghs, G., Kenward, M. G., and Goetghebeur, E. (2001). Sensitivity analysis for incomplete contingency tables: The Slovenian plebiscite case. Applied Statistics 50, 15–29.
    • (2001) Applied Statistics , vol.50 , pp. 15-29
    • Molenberghs, G.1    Kenward, M.G.2    Goetghebeur, E.3
  • 44
    • 0001986642 scopus 로고    scopus 로고
    • The analysis of longitudinal ordinal data with non-random dropout
    • Molenberghs, G., Kenward, M. G., and Lesaffre, E. (1997). The analysis of longitudinal ordinal data with non-random dropout. Biometrika 84, 33–44.
    • (1997) Biometrika , vol.84 , pp. 33-44
    • Molenberghs, G.1    Kenward, M.G.2    Lesaffre, E.3
  • 45
    • 0032353609 scopus 로고    scopus 로고
    • Pseudo-likelihood for combined selection and pattern-mixture models for missing data problems
    • Molenberghs, G., Michiels, B., and Kenward, M. G. (1998). Pseudo-likelihood for combined selection and pattern-mixture models for missing data problems. Biometrical Journal 40, 557–572.
    • (1998) Biometrical Journal , vol.40 , pp. 557-572
    • Molenberghs, G.1    Michiels, B.2    Kenward, M.G.3
  • 52
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • Muthén, B., Kaplan, D., and Hollis, M. (1987). On structural equation modeling with data that are not missing completely at random. Psychometrika 52, 431–462.
    • (1987) Psychometrika , vol.52 , pp. 431-462
    • Muthén, B.1    Kaplan, D.2    Hollis, M.3
  • 53
    • 84950953410 scopus 로고
    • Inference from nonrandomly missing categorical data: An example from a genetic study on Turner’s syndrome
    • Nordheim, E. V. (1984). Inference from nonrandomly missing categorical data: An example from a genetic study on Turner’s syndrome. Journal of the American Statistical Association 79, 772–780.
    • (1984) Journal of the American Statistical Association , vol.79 , pp. 772-780
    • Nordheim, E.V.1
  • 54
    • 0000661332 scopus 로고
    • A generalized multivariate analysis of variance model useful especially for growth curve problems
    • Potthoff, R. F. and Roy, S. N. (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51, 313–326.
    • (1964) Biometrika , vol.51 , pp. 313-326
    • Potthoff, R.F.1    Roy, S.N.2
  • 56
    • 85054614917 scopus 로고    scopus 로고
    • Shared parameter models under randomeffects misspecification
    • Rizopoulos D., Verbeke G., and Molenberghs G. (2008). Shared parameter models under randomeffects misspecification. Biometrika 94, 94–95.
    • (2008) Biometrika , vol.94 , pp. 94-95
    • Rizopoulos, D.1    Verbeke, G.2    Molenberghs, G.3
  • 57
    • 21844487694 scopus 로고
    • Semiparametric efficiency in multivariate regression models with missing data
    • Robins, J. M. and Rotnitzky, A. (1995). Semiparametric efficiency in multivariate regression models with missing data. Journal of the American Statistical Association 90, 122–129.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 122-129
    • Robins, J.M.1    Rotnitzky, A.2
  • 59
    • 0002121637 scopus 로고    scopus 로고
    • Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models
    • M. E. Halloran and D. A. Berry (eds.), New York: Springer
    • Robins, J. M., Rotnitzky, A., and Scharfstein, D. O. (2000). Sensitivity analysis for selection bias and unmeasured confounding in missing data and causal inference models. In M. E. Halloran and D. A. Berry (eds.), Statistical Models in Epidemiology, the Environment, and Clinical Trials, pp. 1–94. New York: Springer.
    • (2000) Statistical Models in Epidemiology, the Environment, and Clinical Trials , pp. 1-94
    • Robins, J.M.1    Rotnitzky, A.2    Scharfstein, D.O.3
  • 61
    • 0035102566 scopus 로고    scopus 로고
    • Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring
    • Rotnitzky, A., Scharfstein, D., Su, T. L., and Robins, J. M. (2001). Methods for conducting sensitivity analysis of trials with potentially nonignorable competing causes of censoring. Biometrics 57, 103–113.
    • (2001) Biometrics , vol.57 , pp. 103-113
    • Rotnitzky, A.1    Scharfstein, D.2    Su, T.L.3    Robins, J.M.4
  • 62
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581–592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 64
    • 0002373853 scopus 로고
    • Discussion of “Informative dropout in longitudinal data analysis,” by P. J. Diggle and M. G. Kenward
    • Rubin, D. B. (1994). Discussion of “Informative dropout in longitudinal data analysis,” by P. J. Diggle and M. G. Kenward. Applied Statistics 43, 80–82.
    • (1994) Applied Statistics , vol.43 , pp. 80-82
    • Rubin, D.B.1
  • 65
    • 84950419706 scopus 로고
    • Handling “don’t know” survey responses: The case of the Slovenian plebiscite
    • Rubin, D. B., Stern H. S., and Vehovar V. (1995). Handling “don’t know” survey responses: The case of the Slovenian plebiscite. Journal of the American Statistical Association 90, 822–828.
    • (1995) Journal of the American Statistical Association , vol.90 , pp. 822-828
    • Rubin, D.B.1    Stern, H.S.2    Vehovar, V.3
  • 66
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for nonignorable drop-out using semiparametric nonresponse models (With discussion)
    • Scharfstein, D. O., Rotnitzky, A., and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models (with discussion). Journal of the American Statistical Association 94, 1096–1146.
    • (1999) Journal of the American Statistical Association , vol.94 , pp. 1096-1146
    • Scharfstein, D.O.1    Rotnitzky, A.2    Robins, J.M.3
  • 67
    • 0034557672 scopus 로고    scopus 로고
    • The milk protein trial: Influence analysis of the dropout process
    • Thijs, H., Molenberghs, G., and Verbeke, G. (2000). The milk protein trial: Influence analysis of the dropout process. Biometrical Journal 42, 617–646.
    • (2000) Biometrical Journal , vol.42 , pp. 617-646
    • Thijs, H.1    Molenberghs, G.2    Verbeke, G.3
  • 69
    • 0039982650 scopus 로고    scopus 로고
    • Analysis of longitudinal data with non-ignorable non-monotone missing values
    • Troxel, A. B., Harrington, D. P., and Lipsitz, S. R. (1998). Analysis of longitudinal data with non-ignorable non-monotone missing values. Applied Statistics 47, 425–438.
    • (1998) Applied Statistics , vol.47 , pp. 425-438
    • Troxel, A.B.1    Harrington, D.P.2    Lipsitz, S.R.3
  • 72
    • 0029048659 scopus 로고
    • Logistic regression with incompletely observed categorical covariates — Investigating the sensitivity against violation of the missing at random assumption
    • Vach, W. and Blettner, M. (1995). Logistic regression with incompletely observed categorical covariates — Investigating the sensitivity against violation of the missing at random assumption. Statistics in Medicine 12, 1315–1330.
    • (1995) Statistics in Medicine , vol.12 , pp. 1315-1330
    • Vach, W.1    Blettner, M.2
  • 73
    • 33750348204 scopus 로고    scopus 로고
    • Ignorance and uncertainty regions as inferential tools in a sensitivity analysis
    • Vansteelandt, S., Goetghebeur, E., Kenward, M. G., and Molenberghs, G. (2006). Ignorance and uncertainty regions as inferential tools in a sensitivity analysis. Statistica Sinica 16, 953–979.
    • (2006) Statistica Sinica , vol.16 , pp. 953-979
    • Vansteelandt, S.1    Goetghebeur, E.2    Kenward, M.G.3    Molenberghs, G.4
  • 74
    • 84993767980 scopus 로고    scopus 로고
    • A local influence approach to sensitivity analysis of incomplete longitudinal ordinal data
    • Van Steen, K., Molenberghs, G., Verbeke, G., and Thijs, H. (2001). A local influence approach to sensitivity analysis of incomplete longitudinal ordinal data. Statistical Modelling 1, 125–142.
    • (2001) Statistical Modelling , vol.1 , pp. 125-142
    • Van Steen, K.1    Molenberghs, G.2    Verbeke, G.3    Thijs, H.4
  • 75
    • 0034994805 scopus 로고    scopus 로고
    • The practical use of different strategies to handle dropout in longitudinal studies
    • Verbeke, G., Lesaffre, E., and Spiessens, B. (2001). The practical use of different strategies to handle dropout in longitudinal studies. Drug Information Journal 35, 419–434.
    • (2001) Drug Information Journal , vol.35 , pp. 419-434
    • Verbeke, G.1    Lesaffre, E.2    Spiessens, B.3
  • 76
    • 0003526944 scopus 로고    scopus 로고
    • Linear Mixed Models in Practice: A SAS-Oriented Approach
    • New York: Springer
    • Verbeke, G. and Molenberghs, G. (1997). Linear Mixed Models in Practice: A SAS-Oriented Approach, Lecture Notes in Statistics 126. New York: Springer.
    • (1997) Lecture Notes in Statistics , pp. 126
    • Verbeke, G.1    Molenberghs, G.2
  • 78
    • 0035102436 scopus 로고    scopus 로고
    • Sensitivity analysis for non-random dropout: A local influence approach
    • Verbeke, G., Molenberghs, G., Thijs, H., Lesaffre, E., and Kenward, M. G. (2001). Sensitivity analysis for non-random dropout: A local influence approach. Biometrics 57, 7–14.
    • (2001) Biometrics , vol.57 , pp. 7-14
    • Verbeke, G.1    Molenberghs, G.2    Thijs, H.3    Lesaffre, E.4    Kenward, M.G.5
  • 79
    • 0032520229 scopus 로고    scopus 로고
    • Clinical trials comparing two treatment arm policies: Which aspects of the treatment policies make a difference?
    • White, I. R. and Goetghebeur, E. J. T. (1998). Clinical trials comparing two treatment arm policies: Which aspects of the treatment policies make a difference? Statistics in Medicine 17, 319–340.
    • (1998) Statistics in Medicine , vol.17 , pp. 319-340
    • White, I.R.1    Goetghebeur, E.J.T.2
  • 80
    • 0023779040 scopus 로고
    • Analysing changes in the presence of informative right censoring caused by death and withdrawal
    • Wu, M. C. and Bailey, K. R. (1988). Analysing changes in the presence of informative right censoring caused by death and withdrawal. Statistics in Medicine 7, 337–346.
    • (1988) Statistics in Medicine , vol.7 , pp. 337-346
    • Wu, M.C.1    Bailey, K.R.2
  • 81
    • 0024438062 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model
    • Wu, M. C. and Bailey, K. R. (1989). Estimation and comparison of changes in the presence of informative right censoring: Conditional linear model. Biometrics 45, 939–955.
    • (1989) Biometrics , vol.45 , pp. 939-955
    • Wu, M.C.1    Bailey, K.R.2
  • 82
    • 0023921412 scopus 로고
    • Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
    • Wu, M. C. and Carroll, R. J. (1988). Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process. Biometrics 44, 175–188.
    • (1988) Biometrics , vol.44 , pp. 175-188
    • Wu, M.C.1    Carroll, R.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.