메뉴 건너뛰기




Volumn 50, Issue 3, 2006, Pages 830-858

The nature of sensitivity in monotone missing not at random models

Author keywords

Ignorability; Likelihood ratio test; Linear mixed model; Local influence; Missing at random; Missing not at random; Sensitivity analysis

Indexed keywords

MATHEMATICAL MODELS;

EID: 25444484182     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2004.10.009     Document Type: Article
Times cited : (58)

References (48)
  • 1
    • 0000828942 scopus 로고
    • Missing observations in multivariate statistics I: Review of the literature
    • A. Afifi, and R. Elashoff Missing observations in multivariate statistics I review of the literature J. Amer. Statist. Assoc. 61 1966 595 604
    • (1966) J. Amer. Statist. Assoc. , vol.61 , pp. 595-604
    • Afifi, A.1    Elashoff, R.2
  • 2
    • 84929837036 scopus 로고
    • Prepivoting test statistics: A bootstrap view of asymptotic refinements
    • R. Beran Prepivoting test statistics a bootstrap view of asymptotic refinements J. Amer. Statist. Assoc. 83 1988 687 697
    • (1988) J. Amer. Statist. Assoc. , vol.83 , pp. 687-697
    • Beran, R.1
  • 5
  • 6
    • 0002627582 scopus 로고    scopus 로고
    • Inference from non-random samples (with discussion)
    • J.B. Copas, and H.G. Li Inference from non-random samples (with discussion) J. Roy. Statist. Soc. Ser. B 59 1997 55 96
    • (1997) J. Roy. Statist. Soc. Ser. B , vol.59 , pp. 55-96
    • Copas, J.B.1    Li, H.G.2
  • 8
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm (with discussion)
    • A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm (with discussion) J. Roy. Statist. Soc. Ser. B 39 1977 1 38
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 9
    • 4243828610 scopus 로고
    • Informative dropout in longitudinal data analysis (with discussion)
    • P.D. Diggle, and M.G. Kenward Informative dropout in longitudinal data analysis (with discussion) Appl. Statist. 43 1994 49 93
    • (1994) Appl. Statist. , vol.43 , pp. 49-93
    • Diggle, P.D.1    Kenward, M.G.2
  • 10
    • 0002276308 scopus 로고
    • Assessment and propagation of model uncertainty (with discussion)
    • D. Draper Assessment and propagation of model uncertainty (with discussion) J. Roy. Statist. Soc. Ser. B 57 1995 45 97
    • (1995) J. Roy. Statist. Soc. Ser. B , vol.57 , pp. 45-97
    • Draper, D.1
  • 11
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • B. Efron Bootstrap methods another look at the jackknife Ann. Statist. 7 1979 1 25
    • (1979) Ann. Statist. , vol.7 , pp. 1-25
    • Efron, B.1
  • 13
  • 14
    • 0003129721 scopus 로고
    • Selection modelling versus mixture modelling with nonignorable nonresponse
    • H. Wainer Springer New York
    • R.J. Glynn, N.M. Laird, and D.B. Rubin Selection modelling versus mixture modelling with nonignorable nonresponse H. Wainer Drawing Inferences from Self-Selected Samples 1986 Springer New York 115 142
    • (1986) Drawing Inferences from Self-Selected Samples , pp. 115-142
    • Glynn, R.J.1    Laird, N.M.2    Rubin, D.B.3
  • 15
    • 0000996385 scopus 로고
    • The analysis of incomplete data
    • H.O. Hartley, and R. Hocking The analysis of incomplete data Biometrics 27 1971 783 808
    • (1971) Biometrics , vol.27 , pp. 783-808
    • Hartley, H.O.1    Hocking, R.2
  • 16
    • 0001766028 scopus 로고
    • The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models
    • J.J. Heckman The common structure of statistical models of truncation, sample selection and limited dependent variables and a simple estimator for such models Ann. Econom. Soc. Meas. 5 1976 475 492
    • (1976) Ann. Econom. Soc. Meas. , vol.5 , pp. 475-492
    • Heckman, J.J.1
  • 18
    • 0038207121 scopus 로고    scopus 로고
    • A local influence approach applied to binary data from a psychiatric study
    • I. Jansen, G. Molenberghs, M. Aerts, H. Thijs, and K. Van Steen A local influence approach applied to binary data from a psychiatric study Biometrics 59 2003 409 418
    • (2003) Biometrics , vol.59 , pp. 409-418
    • Jansen, I.1    Molenberghs, G.2    Aerts, M.3    Thijs, H.4    Van Steen, K.5
  • 20
    • 0032534724 scopus 로고    scopus 로고
    • Selection models for repeated measurements with nonrandom dropout: An illustration of sensitivity
    • M.G. Kenward Selection models for repeated measurements with nonrandom dropout an illustration of sensitivity Statist. Med. 17 1998 2723 2732
    • (1998) Statist. Med. , vol.17 , pp. 2723-2732
    • Kenward, M.G.1
  • 21
    • 0032925431 scopus 로고    scopus 로고
    • Parametric models for incomplete continuous and categorical longitudinal studies data
    • M.G. Kenward, and G. Molenberghs Parametric models for incomplete continuous and categorical longitudinal studies data Statist. Methods Med. Res. 8 1999 51 83
    • (1999) Statist. Methods Med. Res. , vol.8 , pp. 51-83
    • Kenward, M.G.1    Molenberghs, G.2
  • 23
    • 0002373852 scopus 로고
    • Discussion to Diggle, P.J. and Kenward, M.G.: Informative dropout in longitudinal data analysis
    • N.M. Laird Discussion to Diggle, P.J. and Kenward, M.G. informative dropout in longitudinal data analysis Appl. Statist. 43 1994 84
    • (1994) Appl. Statist. , vol.43 , pp. 84
    • Laird, N.M.1
  • 24
    • 0020333131 scopus 로고
    • Random effects models for longitudinal data
    • N.M. Laird, and J.H. Ware Random effects models for longitudinal data Biometrics 38 1982 963 974
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 25
    • 0029157096 scopus 로고
    • A multiple imputation strategy for clinical trials with truncation of patient data
    • P.W. Lavori, R. Dawson, and D. Shera A multiple imputation strategy for clinical trials with truncation of patient data Statist. Med. 14 1995 1913 1925
    • (1995) Statist. Med. , vol.14 , pp. 1913-1925
    • Lavori, P.W.1    Dawson, R.2    Shera, D.3
  • 26
    • 0031744665 scopus 로고    scopus 로고
    • Local influence in linear mixed models
    • E. Lesaffre, and G. Verbeke Local influence in linear mixed models Biometrics 54 1998 570 582
    • (1998) Biometrics , vol.54 , pp. 570-582
    • Lesaffre, E.1    Verbeke, G.2
  • 27
    • 21144483152 scopus 로고
    • Pattern-mixture models for multivariate incomplete data
    • R.J.A. Little Pattern-mixture models for multivariate incomplete data J. Amer. Statist. Assoc. 88 1993 125 134
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 125-134
    • Little, R.J.A.1
  • 28
    • 0002373855 scopus 로고
    • Discussion to Diggle, P.J., Kenward, M.G.: Informative dropout in longitudinal data analysis
    • R.J.A. Little Discussion to Diggle, P.J., Kenward, M.G. informative dropout in longitudinal data analysis Appl. Statist. 43 1994 78
    • (1994) Appl. Statist. , vol.43 , pp. 78
    • Little, R.J.A.1
  • 30
    • 0037273401 scopus 로고    scopus 로고
    • Assessing response profiles from incomplete longitudinal clinical trial data under regulatory considerations
    • C.H. Mallinckrodt, W.S. Clark, R.J. Carroll, and G. Molenberghs Assessing response profiles from incomplete longitudinal clinical trial data under regulatory considerations J. Biopharm. Statist. 13 2003 179 190
    • (2003) J. Biopharm. Statist. , vol.13 , pp. 179-190
    • Mallinckrodt, C.H.1    Clark, W.S.2    Carroll, R.J.3    Molenberghs, G.4
  • 32
    • 0001986642 scopus 로고    scopus 로고
    • The analysis of longitudinal ordinal data with nonrandom dropout
    • G. Molenberghs, M.G. Kenward, and E. Lesaffre The analysis of longitudinal ordinal data with nonrandom dropout Biometrika Series 84 1997 33 44
    • (1997) Biometrika Series , vol.84 , pp. 33-44
    • Molenberghs, G.1    Kenward, M.G.2    Lesaffre, E.3
  • 36
    • 0000238336 scopus 로고
    • A simplex method for function minimisation
    • J.A. Nelder, and R. Mead A simplex method for function minimisation Comput. J. 7 1965 303 313
    • (1965) Comput. J. , vol.7 , pp. 303-313
    • Nelder, J.A.1    Mead, R.2
  • 37
    • 84950953410 scopus 로고
    • Inference from nonrandomly missing categorical data: An example from a genetic study on Turner's syndrome
    • E.V. Nordheim Inference from nonrandomly missing categorical data an example from a genetic study on Turner's syndrome J. Amer. Statist. Assoc. 79 1984 772 780
    • (1984) J. Amer. Statist. Assoc. , vol.79 , pp. 772-780
    • Nordheim, E.V.1
  • 38
    • 0141899476 scopus 로고    scopus 로고
    • Likelihood-based inference with singular information matrix
    • A. Rotnitzky, D.R. Cox, M. Bottai, and J. Robins Likelihood-based inference with singular information matrix Bernouilli 6 2 2000 243 284
    • (2000) Bernouilli , vol.6 , Issue.2 , pp. 243-284
    • Rotnitzky, A.1    Cox, D.R.2    Bottai, M.3    Robins, J.4
  • 40
    • 0002373853 scopus 로고
    • Discussion to Diggle, P.J. and Kenward, M.G.: Informative dropout in longitudinal data analysis
    • D.B. Rubin Discussion to Diggle, P.J. and Kenward, M.G. informative dropout in longitudinal data analysis Appl. Statist. 43 1994 80 82
    • (1994) Appl. Statist. , vol.43 , pp. 80-82
    • Rubin, D.B.1
  • 41
    • 0442278084 scopus 로고    scopus 로고
    • Adjusting for non-ignorable drop-out using semiparametric nonresponse models (with discussion)
    • D.O. Scharfstein, A. Rotnizky, and J.M. Robins Adjusting for non-ignorable drop-out using semiparametric nonresponse models (with discussion) J. Amer. Statist. Assoc. 94 1999 1096 1146
    • (1999) J. Amer. Statist. Assoc. , vol.94 , pp. 1096-1146
    • Scharfstein, D.O.1    Rotnizky, A.2    Robins, J.M.3
  • 42
    • 0034557672 scopus 로고    scopus 로고
    • The milk protein trial: Influence analysis of the dropout process
    • H. Thijs, G. Molenberghs, and G. Verbeke The milk protein trial influence analysis of the dropout process Biometrical J. 42 2000 617 646
    • (2000) Biometrical J. , vol.42 , pp. 617-646
    • Thijs, H.1    Molenberghs, G.2    Verbeke, G.3
  • 44
    • 0029048659 scopus 로고
    • Logistic regression with incompletely observed categorical covariates-investigating the sensitivity against violation of the missing at random assumption
    • W. Vach, and M. Blettner Logistic regression with incompletely observed categorical covariates-investigating the sensitivity against violation of the missing at random assumption Statist. Med. 12 1995 1315 1330
    • (1995) Statist. Med. , vol.12 , pp. 1315-1330
    • Vach, W.1    Blettner, M.2
  • 45
    • 84993767980 scopus 로고    scopus 로고
    • A local influence approach to sensitivity analysis of incomplete longitudinal ordinal data
    • K. Van Steen, G. Molenberghs, G. Verbeke, and H. Thijs A local influence approach to sensitivity analysis of incomplete longitudinal ordinal data Statist. Model. Internat. J. 1 2001 125 142
    • (2001) Statist. Model.: Internat. J. , vol.1 , pp. 125-142
    • Van Steen, K.1    Molenberghs, G.2    Verbeke, G.3    Thijs, H.4
  • 47


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.