메뉴 건너뛰기




Volumn , Issue , 2017, Pages 4701-4705

Large-scale nonconvex stochastic optimization by Doubly Stochastic Successive Convex approximation

Author keywords

large scale optimization; lasso; Non convex optimization; parallel optimization; stochastic methods

Indexed keywords


EID: 85023764368     PISSN: 15206149     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICASSP.2017.7953048     Document Type: Conference Paper
Times cited : (19)

References (29)
  • 4
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • R. D. Nowak, S. J. Wright et al., "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," IEEE Journal of selected topics in signal processing, vol. 1, no. 4, pp. 586-597, 2007.
    • (2007) IEEE Journal of Selected Topics in Signal Processing , vol.1 , Issue.4 , pp. 586-597
    • Nowak, R.D.1    Wright, S.J.2
  • 8
    • 84924692154 scopus 로고    scopus 로고
    • Parallel selective algorithms for nonconvex big data optimization
    • F. Facchinei, G. Scutari, and S. Sagratella, "Parallel selective algorithms for nonconvex big data optimization," Signal Processing, IEEE Transactions on, vol. 63, no. 7, pp. 1874-1889, 2015.
    • (2015) Signal Processing, IEEE Transactions On , vol.63 , Issue.7 , pp. 1874-1889
    • Facchinei, F.1    Scutari, G.2    Sagratella, S.3
  • 9
    • 0000016172 scopus 로고
    • A stochastic approximation method
    • 09
    • H. Robbins and S. Monro, "A stochastic approximation method," Ann. Math. Statist., vol. 22, no. 3, pp. 400-407, 09 1951. [Online]. Available: http://dx.doi.org/10.1214/aoms/1177729586
    • (1951) Ann. Math. Statist. , vol.22 , Issue.3 , pp. 400-407
    • Robbins, H.1    Monro, S.2
  • 10
    • 84968830543 scopus 로고    scopus 로고
    • A parallel decomposition method for nonconvex stochastic multi-agent optimization problems
    • Y. Yang, G. Scutari, D. P. Palomar, and M. Pesavento, "A parallel decomposition method for nonconvex stochastic multi-agent optimization problems," IEEE Transactions on Signal Processing, vol. 64, no. 11, pp. 2949-2964, 2015.
    • (2015) IEEE Transactions on Signal Processing , vol.64 , Issue.11 , pp. 2949-2964
    • Yang, Y.1    Scutari, G.2    Palomar, D.P.3    Pesavento, M.4
  • 13
    • 84910029642 scopus 로고    scopus 로고
    • RES: Regularized stochastic BFGS algorithm
    • A. Mokhtari and A. Ribeiro, "RES: Regularized stochastic BFGS algorithm," Signal Processing, IEEE Transactions on, vol. 62, no. 23, pp. 6089-6104, 2014.
    • (2014) Signal Processing, IEEE Transactions On , vol.62 , Issue.23 , pp. 6089-6104
    • Mokhtari, A.1    Ribeiro, A.2
  • 15
    • 0035533631 scopus 로고    scopus 로고
    • Convergence of a block coordinate descent method for nondifferentiable minimization
    • P. Tseng and C. O. L. Mangasarian, "Convergence of a block coordinate descent method for nondifferentiable minimization," J. Optim Theory Appl, pp. 475-494, 2001.
    • (2001) J. Optim Theory Appl , pp. 475-494
    • Tseng, P.1    Mangasarian, C.O.L.2
  • 16
    • 0026678659 scopus 로고
    • On the convergence of the coordinate descent method for convex differentiable minimization
    • Z. Q. Luo and P. Tseng, "On the convergence of the coordinate descent method for convex differentiable minimization," Journal of Optimization Theory and Applications, vol. 72, no. 1, pp. 7-35, 1992.
    • (1992) Journal of Optimization Theory and Applications , vol.72 , Issue.1 , pp. 7-35
    • Luo, Z.Q.1    Tseng, P.2
  • 17
    • 84892868336 scopus 로고    scopus 로고
    • On the convergence of block coordinate descent type methods
    • A. Beck and L. Tetruashvili, "On the convergence of block coordinate descent type methods," SIAM Journal on Optimization, vol. 23, no. 4, pp. 2037-2060, 2013.
    • (2013) SIAM Journal on Optimization , vol.23 , Issue.4 , pp. 2037-2060
    • Beck, A.1    Tetruashvili, L.2
  • 19
    • 84947110023 scopus 로고    scopus 로고
    • Parallel coordinate descent methods for big data optimization
    • P. Richtárik and M. Takáč, "Parallel coordinate descent methods for big data optimization," Mathematical Programming, pp. 1-52, 2015.
    • (2015) Mathematical Programming , pp. 1-52
    • Richtárik, P.1    Takáč, M.2
  • 21
    • 85054199865 scopus 로고    scopus 로고
    • Large-scale nonconvex stochastic optimization by doubly stochastic successive convex approximation
    • A. Mokhtari, A. Koppel, G. Scutari, and A. Ribeiro, "Large-scale nonconvex stochastic optimization by doubly stochastic successive convex approximation," University of Pennsylvania Technical Report, 2016. [Online]. Available: https://fling.seas.upenn.edu/~akoppel/assets/papers/dssc_report.pdf
    • (2016) University of Pennsylvania Technical Report
    • Mokhtari, A.1    Koppel, A.2    Scutari, G.3    Ribeiro, A.4
  • 22
    • 84992107976 scopus 로고    scopus 로고
    • Doubly random parallel stochastic methods for large scale learning
    • July
    • A. Mokhtari, A. Koppel, and A. Ribeiro, "Doubly random parallel stochastic methods for large scale learning," in 2016 American Control Conference (ACC), July 2016, pp. 4847-4852.
    • (2016) 2016 American Control Conference (ACC) , pp. 4847-4852
    • Mokhtari, A.1    Koppel, A.2    Ribeiro, A.3
  • 24
    • 84919793228 scopus 로고    scopus 로고
    • A proximal stochastic gradient method with progressive variance reduction
    • L. Xiao and T. Zhang, "A proximal stochastic gradient method with progressive variance reduction," SIAM Journal on Optimization, vol. 24, no. 4, pp. 2057-2075, 2014.
    • (2014) SIAM Journal on Optimization , vol.24 , Issue.4 , pp. 2057-2075
    • Xiao, L.1    Zhang, T.2
  • 25
    • 0008757519 scopus 로고
    • Feasible direction methods for stochastic programming problems
    • A. Ruszczyński, "Feasible direction methods for stochastic programming problems," Mathematical Programming, vol. 19, no. 1, pp. 220-229, 1980.
    • (1980) Mathematical Programming , vol.19 , Issue.1 , pp. 220-229
    • Ruszczyński, A.1
  • 27
    • 85023769761 scopus 로고    scopus 로고
    • Alternating proximal gradient method for convex minimization
    • S. Ma, "Alternating proximal gradient method for convex minimization," Journal of Scientific Computing, pp. 1-27.
    • Journal of Scientific Computing , pp. 1-27
    • Ma, S.1
  • 28
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • A. Beck and M. Teboulle, "A fast iterative shrinkage-thresholding algorithm for linear inverse problems," SIAM journal on imaging sciences, vol. 2, no. 1, pp. 183-202, 2009.
    • (2009) SIAM Journal on Imaging Sciences , vol.2 , Issue.1 , pp. 183-202
    • Beck, A.1    Teboulle, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.