메뉴 건너뛰기




Volumn , Issue , 2017, Pages

Guaranteed non-convex optimization: Submodular maximization over continuous domains

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVEX OPTIMIZATION; ENERGY EFFICIENCY; FUNCTIONS;

EID: 85083938903     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (158)

References (56)
  • 1
    • 4344588928 scopus 로고    scopus 로고
    • Pipage rounding: A new method of constructing algorithms with proven performance guarantee
    • Alexander A Ageev and Maxim I Sviridenko. Pipage rounding: A new method of constructing algorithms with proven performance guarantee. Journal of Combinatorial Optimization, 8(3):307–328, 2004.
    • (2004) Journal of Combinatorial Optimization , vol.8 , Issue.3 , pp. 307-328
    • Ageev, A.A.1    Sviridenko, M.I.2
  • 4
    • 84908049572 scopus 로고    scopus 로고
    • Tensor decompositions for learning latent variable models
    • Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor decompositions for learning latent variable models. JMLR, 15(1):2773–2832, 2014.
    • (2014) JMLR , vol.15 , Issue.1 , pp. 2773-2832
    • Anandkumar, A.1    Ge, R.2    Hsu, D.3    Kakade, S.M.4    Telgarsky, M.5
  • 6
    • 85162027958 scopus 로고    scopus 로고
    • Structured sparsity-inducing norms through submodular functions
    • Francis R Bach. Structured sparsity-inducing norms through submodular functions. In NIPS, pages 118–126, 2010.
    • (2010) NIPS , pp. 118-126
    • Bach, F.R.1
  • 9
    • 84871947114 scopus 로고    scopus 로고
    • A tight linear time (1/2)-approximation for unconstrained submodular maximization
    • IEEE
    • Niv Buchbinder, Moran Feldman, Joseph Seffi Naor, and Roy Schwartz. A tight linear time (1/2)-approximation for unconstrained submodular maximization. In FOCS, pages 649–658. IEEE, 2012.
    • (2012) FOCS , pp. 649-658
    • Buchbinder, N.1    Feldman, M.2    Naor, J.S.3    Schwartz, R.4
  • 11
    • 84855599508 scopus 로고    scopus 로고
    • Maximizing a monotone submodular function subject to a matroid constraint
    • Gruia Cälinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766, 2011.
    • (2011) SIAM J. Comput. , vol.40 , Issue.6 , pp. 1740-1766
    • Cälinescu, G.1    Chekuri, C.2    Pál, M.3    Vondrák, J.4
  • 13
    • 84937925250 scopus 로고    scopus 로고
    • From map to marginals: Variational inference in bayesian submodular models
    • Josip Djolonga and Andreas Krause. From map to marginals: Variational inference in bayesian submodular models. In NIPS, pages 244–252, 2014.
    • (2014) NIPS , pp. 244-252
    • Djolonga, J.1    Krause, A.2
  • 15
    • 85010743821 scopus 로고    scopus 로고
    • Designing smoothing functions for improved worst-case competitive ratio in online optimization
    • Reza Eghbali and Maryam Fazel. Designing smoothing functions for improved worst-case competitive ratio in online optimization. In NIPS, pages 3279–3287. 2016.
    • (2016) NIPS , pp. 3279-3287
    • Eghbali, R.1    Fazel, M.2
  • 17
    • 0032108328 scopus 로고    scopus 로고
    • A threshold of ln n for approximating set cover
    • Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 45(4):634–652, 1998.
    • (1998) Journal of the ACM (JACM) , vol.45 , Issue.4 , pp. 634-652
    • Feige, U.1
  • 18
    • 80053189937 scopus 로고    scopus 로고
    • Maximizing non-monotone submodular functions
    • Uriel Feige, Vahab S Mirrokni, and Jan Vondrak. Maximizing non-monotone submodular functions. SIAM Journal on Computing, 40(4):1133–1153, 2011.
    • (2011) SIAM Journal on Computing , vol.40 , Issue.4 , pp. 1133-1153
    • Feige, U.1    Mirrokni, V.S.2    Vondrak, J.3
  • 19
    • 0001971618 scopus 로고
    • An algorithm for quadratic programming
    • Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval research logistics quarterly, 3(1-2):95–110, 1956.
    • (1956) Naval Research Logistics Quarterly , vol.3 , Issue.1-2 , pp. 95-110
    • Frank, M.1    Wolfe, P.2
  • 22
    • 84856462978 scopus 로고    scopus 로고
    • Adaptive submodularity: Theory and applications in active learning and stochastic optimization
    • Daniel Golovin and Andreas Krause. Adaptive submodularity: Theory and applications in active learning and stochastic optimization. Journal of Artificial Intelligence Research, pages 427–486, 2011.
    • (2011) Journal of Artificial Intelligence Research , pp. 427-486
    • Golovin, D.1    Krause, A.2
  • 23
    • 84956698989 scopus 로고    scopus 로고
    • Submodular function maximization on the bounded integer lattice
    • Springer
    • Corinna Gottschalk and Britta Peis. Submodular function maximization on the bounded integer lattice. In Approximation and Online Algorithms, pages 133–144. Springer, 2015.
    • (2015) Approximation and Online Algorithms , pp. 133-144
    • Gottschalk, C.1    Peis, B.2
  • 25
    • 84959888180 scopus 로고    scopus 로고
    • Lagrangian decomposition algorithm for allocating marketing channels
    • Daisuke Hatano, Takuro Fukunaga, Takanori Maehara, and Ken-ichi Kawarabayashi. Lagrangian decomposition algorithm for allocating marketing channels. In AAAI, pages 1144–1150, 2015.
    • (2015) AAAI , pp. 1144-1150
    • Hatano, D.1    Fukunaga, T.2    Maehara, T.3    Kawarabayashi, K.-I.4
  • 27
    • 0000335630 scopus 로고    scopus 로고
    • A combinatorial strongly polynomial algorithm for minimizing submodular functions
    • Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. A combinatorial strongly polynomial algorithm for minimizing submodular functions. Journal of the ACM, 48(4):761–777, 2001.
    • (2001) Journal of the ACM , vol.48 , Issue.4 , pp. 761-777
    • Iwata, S.1    Fleischer, L.2    Fujishige, S.3
  • 28
    • 84897524603 scopus 로고    scopus 로고
    • Revisiting frank-wolfe: Projection-free sparse convex optimization
    • Martin Jaggi. Revisiting frank-wolfe: Projection-free sparse convex optimization. In ICML 2013, pages 427–435, 2013.
    • (2013) ICML 2013 , pp. 427-435
    • Jaggi, M.1
  • 29
    • 85057268947 scopus 로고    scopus 로고
    • Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods
    • abs
    • Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-convexity: Guaranteed training of neural networks using tensor methods. CoRR abs/1506.08473, 2015.
    • (2015) CoRR
    • Janzamin, M.1    Sedghi, H.2    Anandkumar, A.3
  • 30
    • 0242302674 scopus 로고    scopus 로고
    • Exact solutions of some nonconvex quadratic optimization problems via sdp and socp relaxations
    • Sunyoung Kim and Masakazu Kojima. Exact solutions of some nonconvex quadratic optimization problems via sdp and socp relaxations. Computational Optimization and Applications, 26(2):143–154, 2003.
    • (2003) Computational Optimization and Applications , vol.26 , Issue.2 , pp. 143-154
    • Kim, S.1    Kojima, M.2
  • 31
    • 80052121484 scopus 로고    scopus 로고
    • \-convex and bisubmodular functions
    • Springer
    • Vladimir Kolmogorov. Submodularity on a tree: Unifying l-convex and bisubmodular functions. In Mathematical Foundations of Computer Science, pages 400–411. Springer, 2011.
    • (2011) Mathematical Foundations of Computer Science , pp. 400-411
    • Kolmogorov, V.1
  • 32
    • 77956509091 scopus 로고    scopus 로고
    • Submodular dictionary selection for sparse representation
    • Andreas Krause and Volkan Cevher. Submodular dictionary selection for sparse representation. In ICML, pages 567–574, 2010.
    • (2010) ICML , pp. 567-574
    • Krause, A.1    Cevher, V.2
  • 34
    • 67650691734 scopus 로고    scopus 로고
    • Near-optimal nonmyopic value of information in graphical models
    • Andreas Krause and Carlos Guestrin. Near-optimal nonmyopic value of information in graphical models. In UAI, pages 324–331, 2005.
    • (2005) UAI , pp. 324-331
    • Krause, A.1    Guestrin, C.2
  • 37
    • 84965105960 scopus 로고    scopus 로고
    • Accelerated proximal gradient methods for nonconvex programming
    • Huan Li and Zhouchen Lin. Accelerated proximal gradient methods for nonconvex programming. In NIPS, pages 379–387, 2015.
    • (2015) NIPS , pp. 379-387
    • Li, H.1    Lin, Z.2
  • 39
    • 84859070008 scopus 로고    scopus 로고
    • A class of submodular functions for document summarization
    • Hui Lin and Je Bilmes. A class of submodular functions for document summarization. In HLT, 2011.
    • (2011) HLT
    • Lin, H.1    Bilmes, J.2
  • 41
    • 84898931932 scopus 로고    scopus 로고
    • Distributed submodular maximization: Identifying representative elements in massive data
    • Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular maximization: Identifying representative elements in massive data. In NIPS, pages 2049–2057, 2013.
    • (2013) NIPS , pp. 2049-2057
    • Mirzasoleiman, B.1    Karbasi, A.2    Sarkar, R.3    Krause, A.4
  • 42
    • 0000095809 scopus 로고
    • An analysis of approximations for maximizing submodular set functions – I
    • George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An analysis of approximations for maximizing submodular set functions – i. Mathematical Programming, 14(1):265–294, 1978.
    • (1978) Mathematical Programming , vol.14 , Issue.1 , pp. 265-294
    • Nemhauser, G.L.1    Wolsey, L.A.2    Fisher, M.L.3
  • 43
    • 33646730150 scopus 로고    scopus 로고
    • Cubic regularization of newton method and its global performance
    • Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its global performance. Mathematical Programming, 108(1):177–205, 2006.
    • (2006) Mathematical Programming , vol.108 , Issue.1 , pp. 177-205
    • Nesterov, Y.1    Polyak, B.T.2
  • 47
    • 0000093702 scopus 로고    scopus 로고
    • Convex quadratic and semidefinite programming relaxations in scheduling
    • Martin Skutella. Convex quadratic and semidefinite programming relaxations in scheduling. J. ACM, 2001.
    • (2001) J. ACM
    • Skutella, M.1
  • 48
    • 85048680019 scopus 로고    scopus 로고
    • Optimal budget allocation: Theoretical guarantee and efficient algorithm
    • Tasuku Soma, Naonori Kakimura, Kazuhiro Inaba, and Ken-ichi Kawarabayashi. Optimal budget allocation: Theoretical guarantee and efficient algorithm. In ICML, pages 351–359, 2014.
    • (2014) ICML , pp. 351-359
    • Soma, T.1    Kakimura, N.2    Inaba, K.3    Kawarabayashi, K.-I.4
  • 49
    • 84965141173 scopus 로고    scopus 로고
    • A generalization of submodular cover via the diminishing return property on the integer lattice
    • Tasuku Soma and Yuichi Yoshida. A generalization of submodular cover via the diminishing return property on the integer lattice. In NIPS, pages 847–855, 2015.
    • (2015) NIPS , pp. 847-855
    • Soma, T.1    Yoshida, Y.2
  • 51
    • 84877778467 scopus 로고    scopus 로고
    • Scalable nonconvex inexact proximal splitting
    • Suvrit Sra. Scalable nonconvex inexact proximal splitting. In NIPS, pages 530–538, 2012.
    • (2012) NIPS , pp. 530-538
    • Sra, S.1
  • 52
    • 0142029543 scopus 로고    scopus 로고
    • A note on maximizing a submodular set function subject to a knapsack constraint
    • Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack constraint. Operations Research Letters, 32(1):41–43, 2004.
    • (2004) Operations Research Letters , vol.32 , Issue.1 , pp. 41-43
    • Sviridenko, M.1
  • 53
    • 0000348040 scopus 로고
    • Minimizing a submodular function on a lattice
    • Donald M Topkis. Minimizing a submodular function on a lattice. Operations research, 26(2):305–321, 1978.
    • (1978) Operations Research , vol.26 , Issue.2 , pp. 305-321
    • Topkis, D.M.1
  • 55
    • 84902105493 scopus 로고    scopus 로고
    • Maximizing bisubmodular and k-submodular functions
    • Justin Ward and Stanislav Zivny. Maximizing bisubmodular and k-submodular functions. In SODA 2014, pages 1468–1481, 2014.
    • (2014) SODA 2014 , pp. 1468-1481
    • Ward, J.1    Zivny, S.2
  • 56
    • 0142011932 scopus 로고
    • Maximising real-valued submodular functions: Primal and dual heuristics for location problems
    • Laurence A. Wolsey. Maximising real-valued submodular functions: Primal and dual heuristics for location problems. Math. Oper. Res., 7(3):410–425, 1982.
    • (1982) Math. Oper. Res. , vol.7 , Issue.3 , pp. 410-425
    • Wolsey, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.