-
2
-
-
84922868050
-
Gut-liver axis in alcoholic liver disease
-
Szabo G. Gut-liver axis in alcoholic liver disease. Gastroenterology 2015; 148: 30-6.
-
(2015)
Gastroenterology
, vol.148
, pp. 30-36
-
-
Szabo, G.1
-
3
-
-
84954287816
-
Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease
-
L lopis M, Cassard AM, Wrzosek L, et al. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016; 65: 830-9.
-
(2016)
Gut
, vol.65
, pp. 830-839
-
-
Llopis, M.1
Cassard, A.M.2
Wrzosek, L.3
-
4
-
-
84921304368
-
Antimicrobial defense of the intestine
-
Mukherjee S, Hooper LV. Antimicrobial defense of the intestine. Immunity 2015; 42: 28-39.
-
(2015)
Immunity
, vol.42
, pp. 28-39
-
-
Mukherjee, S.1
Hooper, L.V.2
-
5
-
-
84879600829
-
Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice
-
Hartmann P, Chen P, Wang HJ, et al. Deficiency of intestinal mucin-2 ameliorates experimental alcoholic liver disease in mice. Hepatology 2013; 58: 108-19.
-
(2013)
Hepatology
, vol.58
, pp. 108-119
-
-
Hartmann, P.1
Chen, P.2
Wang, H.J.3
-
6
-
-
78751537350
-
Enteric dysbiosis associated with a mouse model of alcoholic liver disease
-
Yan AW, Fouts DE, Brandl J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology 2011; 53: 96-105.
-
(2011)
Hepatology
, vol.53
, pp. 96-105
-
-
Yan, A.W.1
Fouts, D.E.2
Brandl, J.3
-
7
-
-
85012022783
-
Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation
-
Wang L, Fouts DE, Stärkel P, et al. Intestinal REG3 lectins protect against alcoholic steatohepatitis by reducing mucosa-associated microbiota and preventing bacterial translocation. Cell Host Microbe 2016; 19: 227-39.
-
(2016)
Cell Host Microbe
, vol.19
, pp. 227-239
-
-
Wang, L.1
Fouts, D.E.2
Stärkel, P.3
-
8
-
-
79955030498
-
Border patrol: Regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22
-
Sonnenberg GF, Fouser LA, Artis D. Border patrol: Regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat Immunol 2011; 12: 383-90.
-
(2011)
Nat Immunol
, vol.12
, pp. 383-390
-
-
Sonnenberg, G.F.1
Fouser, L.A.2
Artis, D.3
-
9
-
-
84875160269
-
Mouse model of chronic and binge ethanol feeding (the NIAAA model)
-
Bertola A, Mathews S, Ki SH, et al. Mouse model of chronic and binge ethanol feeding (the NIAAA model). Nat Protoc 2013; 8: 627-37.
-
(2013)
Nat Protoc
, vol.8
, pp. 627-637
-
-
Bertola, A.1
Mathews, S.2
Ki, S.H.3
-
10
-
-
53649098280
-
Vancomycin-resistant enterococci exploit antibioticinduced innate immune deficits
-
Brandl K, Plitas G, Mihu CN, et al. Vancomycin-resistant enterococci exploit antibioticinduced innate immune deficits. Nature 2008; 455: 804-7.
-
(2008)
Nature
, vol.455
, pp. 804-807
-
-
Brandl, K.1
Plitas, G.2
Mihu, C.N.3
-
11
-
-
58549111588
-
Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface
-
Vaishnava S, Behrendt CL, Ismail AS, et al. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 2008; 105: 20858-63.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20858-20863
-
-
Vaishnava, S.1
Behrendt, C.L.2
Ismail, A.S.3
-
12
-
-
85053281426
-
Interleukin-22 signaling in the regulation of intestinal health and disease
-
Parks OB, Pociask DA, Hodzic Z, et al. Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease. Front Cell Dev Biol 2015; 3: 85.
-
(2015)
Front Cell Dev Biol
, vol.3
, pp. 85
-
-
Parks, O.B.1
Pociask, D.A.2
Hodzic, Z.3
-
13
-
-
34247556456
-
IL-22 induces lipopolysaccharide-binding protein in hepatocytes: A potential systemic role of IL-22 in Crohn's disease
-
Wolk K, Witte E, Hoffmann U, et al. IL-22 induces lipopolysaccharide-binding protein in hepatocytes: A potential systemic role of IL-22 in Crohn's disease. J Immunol 2007; 178: 5973-81.
-
(2007)
J Immunol
, vol.178
, pp. 5973-5981
-
-
Wolk, K.1
Witte, E.2
Hoffmann, U.3
-
14
-
-
84882664672
-
Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22
-
Zelante T, Iannitti RG, Cunha C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 2013; 39: 372-85.
-
(2013)
Immunity
, vol.39
, pp. 372-385
-
-
Zelante, T.1
Iannitti, R.G.2
Cunha, C.3
-
15
-
-
84855917402
-
AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch
-
L ee JS, Cella M, McDonald KG, et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat Immunol 2011; 13: 144-51.
-
(2011)
Nat Immunol
, vol.13
, pp. 144-151
-
-
Lee, J.S.1
Cella, M.2
McDonald, K.G.3
-
16
-
-
84966526506
-
CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands
-
L amas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 2016; 22: 598-605.
-
(2016)
Nat Med
, vol.22
, pp. 598-605
-
-
Lamas, B.1
Richard, M.L.2
Leducq, V.3
-
17
-
-
85027063083
-
Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells
-
C ervantes-Barragan L, Chai JN, Tianero MD, et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells. Science 2017; 357: 806-10.
-
(2017)
Science
, vol.357
, pp. 806-810
-
-
Cervantes-Barragan, L.1
Chai, J.N.2
Tianero, M.D.3
-
18
-
-
84923468701
-
Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor i and mediates alcoholic liver disease in mice
-
C hen P, Stärkel P, Turner JR, et al. Dysbiosis-induced intestinal inflammation activates tumor necrosis factor receptor I and mediates alcoholic liver disease in mice. Hepatology 2015; 61: 883-94.
-
(2015)
Hepatology
, vol.61
, pp. 883-894
-
-
Chen, P.1
Stärkel, P.2
Turner, J.R.3
-
19
-
-
85045415551
-
Modulation of the intestinal bile acid/ farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice
-
Hartmann P, Hochrath K, Horvath A, et al. Modulation of the intestinal bile acid/ farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology 2018; 67: 2150-66.
-
(2018)
Hepatology
, vol.67
, pp. 2150-2166
-
-
Hartmann, P.1
Hochrath, K.2
Horvath, A.3
-
20
-
-
0029850220
-
Formulation of 'idealized' topical antimicrobial mixtures for use with cultured skin grafts
-
Holder IA, Boyce ST. Formulation of 'idealized' topical antimicrobial mixtures for use with cultured skin grafts. J Antimicrob Chemother 1996; 38: 457-63.
-
(1996)
J Antimicrob Chemother
, vol.38
, pp. 457-463
-
-
Holder, I.A.1
Boyce, S.T.2
-
21
-
-
77957946415
-
Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: Role of signal transducer and activator of transcription 3
-
Ki SH, Park O, Zheng M, et al. Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: Role of signal transducer and activator of transcription 3. Hepatology 2010; 52: 1291-300.
-
(2010)
Hepatology
, vol.52
, pp. 1291-1300
-
-
Ki, S.H.1
Park, O.2
Zheng, M.3
-
22
-
-
79960769980
-
Interleukin-22 protects against acute alcohol-induced hepatotoxicity in mice
-
Xing WW, Zou MJ, Liu S, et al. Interleukin-22 protects against acute alcohol-induced hepatotoxicity in mice. Biosci Biotechnol Biochem 2011; 75: 1290-4.
-
(2011)
Biosci Biotechnol Biochem
, vol.75
, pp. 1290-1294
-
-
Xing, W.W.1
Zou, M.J.2
Liu, S.3
-
23
-
-
85046667616
-
Intestinal dysbiosis and permeability: The yin and yang in alcohol dependence and alcoholic liver disease
-
Stärkel P, Leclercq S, De Timary P, et al. Intestinal dysbiosis and permeability: The yin and yang in alcohol dependence and alcoholic liver disease. Clin Sci 2018; 132: 199-212.
-
(2018)
Clin Sci
, vol.132
, pp. 199-212
-
-
Stärkel, P.1
Leclercq, S.2
De Timary, P.3
-
25
-
-
84922479625
-
The IL-20 subfamily of cytokines-from host defence to tissue homeostasis
-
R utz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines-from host defence to tissue homeostasis. Nat Rev Immunol 2014; 14: 783-95.
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 783-795
-
-
Rutz, S.1
Wang, X.2
Ouyang, W.3
-
26
-
-
84867807929
-
Innate lymphoid cell interactions with microbiota: Implications for intestinal health and disease
-
Sonnenberg GF, Artis D. Innate lymphoid cell interactions with microbiota: Implications for intestinal health and disease. Immunity 2012; 37: 601-10.
-
(2012)
Immunity
, vol.37
, pp. 601-610
-
-
Sonnenberg, G.F.1
Artis, D.2
-
27
-
-
79952986650
-
RORãt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota
-
Sawa S, Lochner M, Satoh-Takayama N, et al. RORãt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 2011; 12: 320-6.
-
(2011)
Nat Immunol
, vol.12
, pp. 320-326
-
-
Sawa, S.1
Lochner, M.2
Satoh-Takayama, N.3
-
28
-
-
57849117363
-
RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
-
Sanos SL, Bui VL, Mortha A, et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 2009; 10: 83-91.
-
(2009)
Nat Immunol
, vol.10
, pp. 83-91
-
-
Sanos, S.L.1
Bui, V.L.2
Mortha, A.3
-
29
-
-
57449118239
-
Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense
-
Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 2008; 29: 958-70.
-
(2008)
Immunity
, vol.29
, pp. 958-970
-
-
Satoh-Takayama, N.1
Vosshenrich, C.A.2
Lesjean-Pottier, S.3
-
30
-
-
79959918506
-
Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract
-
48 e1
-
Monteleone I, Rizzo A, Sarra M, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology 2011; 141: 237-48. 48 e1.
-
(2011)
Gastroenterology
, vol.141
, pp. 237-248
-
-
Monteleone, I.1
Rizzo, A.2
Sarra, M.3
-
31
-
-
85047213592
-
Gut microbiota regulation of tryptophan metabolism in health and disease
-
A gus A, Planchais J, Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe 2018; 23: 716-24.
-
(2018)
Cell Host Microbe
, vol.23
, pp. 716-724
-
-
Agus, A.1
Planchais, J.2
Sokol, H.3
-
32
-
-
62649151803
-
Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites
-
Wikoff WR, Anfora AT , Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A 2009; 106: 3698-703.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 3698-3703
-
-
Wikoff, W.R.1
Anfora, A.T.2
Liu, J.3
-
33
-
-
85021330462
-
Intestinal fungi contribute to development of alcoholic liver disease
-
Yang AM, Inamine T, Hochrath K, et al. Intestinal fungi contribute to development of alcoholic liver disease. J Clin Invest 2017; 127: 2829-41.
-
(2017)
J Clin Invest
, vol.127
, pp. 2829-2841
-
-
Yang, A.M.1
Inamine, T.2
Hochrath, K.3
-
34
-
-
70349335851
-
Intestinal dysbiosis: A possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats
-
Mutlu E, Keshavarzian A, Engen P, et al. Intestinal dysbiosis: A possible mechanism of alcohol-induced endotoxemia and alcoholic steatohepatitis in rats. Alcohol Clin Exp Res 2009; 33: 1836-46.
-
(2009)
Alcohol Clin Exp Res
, vol.33
, pp. 1836-1846
-
-
Mutlu, E.1
Keshavarzian, A.2
Engen, P.3
-
35
-
-
0028220726
-
Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease)
-
N anji AA, Khettry U, Sadrzadeh SM. Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease). Proc Soc Exp Biol Med 1994; 205: 243-7.
-
(1994)
Proc Soc Exp Biol Med
, vol.205
, pp. 243-247
-
-
Nanji, A.A.1
Khettry, U.2
Sadrzadeh, S.M.3
-
36
-
-
80052023399
-
Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT 3
-
Jiang R, Tan Z, Deng L, et al. Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT 3. Hepatology 2011; 54: 900-9.
-
(2011)
Hepatology
, vol.54
, pp. 900-909
-
-
Jiang, R.1
Tan, Z.2
Deng, L.3
-
37
-
-
79955776494
-
In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease progression
-
Park O, Wang H, Weng H, et al. In vivo consequences of liver-specific interleukin-22 expression in mice: Implications for human liver disease progression. Hepatology 2011; 54: 252-61.
-
(2011)
Hepatology
, vol.54
, pp. 252-261
-
-
Park, O.1
Wang, H.2
Weng, H.3
-
38
-
-
84896848288
-
Interleukin-22 serum levels are a negative prognostic indicator in patients with hepatocellular carcinoma
-
Waidmann O, Kronenberger B, Scheiermann P, et al. Interleukin-22 serum levels are a negative prognostic indicator in patients with hepatocellular carcinoma. Hepatology 2014; 59: 1207.
-
(2014)
Hepatology
, vol.59
, pp. 1207
-
-
Waidmann, O.1
Kronenberger, B.2
Scheiermann, P.3
-
39
-
-
80054122238
-
The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine
-
Vaishnava S, Yamamoto M, Severson KM, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334: 255-8.
-
(2011)
Science
, vol.334
, pp. 255-258
-
-
Vaishnava, S.1
Yamamoto, M.2
Severson, K.M.3
-
40
-
-
85047085514
-
Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis
-
Brandl K, Hartmann P, Jih LJ, et al. Dysregulation of serum bile acids and FGF19 in alcoholic hepatitis. J Hepatol 2018; 69: 396-405.
-
(2018)
J Hepatol
, vol.69
, pp. 396-405
-
-
Brandl, K.1
Hartmann, P.2
Jih, L.J.3
-
42
-
-
84930181342
-
MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis
-
T sugawa H, Cajka T, Kind T, et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 2015; 12: 523-6.
-
(2015)
Nat Methods
, vol.12
, pp. 523-526
-
-
Tsugawa, H.1
Cajka, T.2
Kind, T.3
-
43
-
-
85018329640
-
Mass Spectral Feature List Optimizer (MS-FLO): A tool to minimize false positive peak reports in untargeted Liquid Chromatography-Mass Spectroscopy (LC-MS) data processing
-
DeFelice BC, Mehta SS, Samra S, et al. Mass Spectral Feature List Optimizer (MS-FLO): A tool to minimize false positive peak reports in untargeted Liquid Chromatography-Mass Spectroscopy (LC-MS) data processing. Anal Chem 2017; 89: 3250-5.
-
(2017)
Anal Chem
, vol.89
, pp. 3250-3255
-
-
DeFelice, B.C.1
Mehta, S.S.2
Samra, S.3
-
44
-
-
84868136560
-
Toll-like receptor 2-mediated intestinal injury and enteric tumor necrosis factor receptor i contribute to liver fibrosis in mice
-
Hartmann P, Haimerl M, Mazagova M, et al. Toll-like receptor 2-mediated intestinal injury and enteric tumor necrosis factor receptor I contribute to liver fibrosis in mice. Gastroenterology 2012; 143: 1330-40.
-
(2012)
Gastroenterology
, vol.143
, pp. 1330-1340
-
-
Hartmann, P.1
Haimerl, M.2
Mazagova, M.3
-
45
-
-
84861192672
-
Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease
-
Fouts DE, Torralba M, Nelson KE, et al. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol 2012; 56: 1283-92.
-
(2012)
J Hepatol
, vol.56
, pp. 1283-1292
-
-
Fouts, D.E.1
Torralba, M.2
Nelson, K.E.3
-
46
-
-
85068885319
-
Crosstalk between gut microbiota, innate lymphoid cells and endocrine cells in the pancreas regulates autoimmune diabetes
-
Miani M, Naour JL, Waeckel-Enée E, et al. Crosstalk between gut microbiota, innate lymphoid cells and endocrine cells in the pancreas regulates autoimmune diabetes. Cell Metabolism 2018; 28: 557-72.
-
(2018)
Cell Metabolism
, vol.28
, pp. 557-572
-
-
Miani, M.1
Naour, J.L.2
Waeckel-Enée, E.3
|