-
2
-
-
85017430116
-
The development and functions of multiciliated epithelia
-
COI: 1:CAS:528:DC%2BC2sXlvVOgs7s%3D
-
Spassky, N. & Meunier, A. The development and functions of multiciliated epithelia. Nat. Rev. Mol. Cell Biol. 18, 423–436 (2017)
-
(2017)
Nat. Rev. Mol. Cell Biol.
, vol.18
, pp. 423-436
-
-
Spassky, N.1
Meunier, A.2
-
3
-
-
84908210308
-
Multiciliated cells
-
COI: 1:CAS:528:DC%2BC2cXhslSrt7fN
-
Brooks, E. R. & Wallingford, J. B. Multiciliated cells. Curr. Biol. 24, R973–R982 (2014)
-
(2014)
Curr. Biol.
, vol.24
, pp. R973-R982
-
-
Brooks, E.R.1
Wallingford, J.B.2
-
4
-
-
84946606423
-
Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche
-
COI: 1:CAS:528:DC%2BC28XntFSjsr8%3D
-
Kyrousi, C. et al. Mcidas and GemC1 are key regulators for the generation of multiciliated ependymal cells in the adult neurogenic niche. Development 142, 3661–3674 (2015)
-
(2015)
Development
, vol.142
, pp. 3661-3674
-
-
Kyrousi, C.1
-
5
-
-
84959517060
-
GemC1 controls multiciliogenesis in the airway epithelium
-
COI: 1:CAS:528:DC%2BC28XitVWisr8%3D
-
Arbi, M. et al. GemC1 controls multiciliogenesis in the airway epithelium. EMBO Rep. 17, 400–413 (2016)
-
(2016)
EMBO Rep.
, vol.17
, pp. 400-413
-
-
Arbi, M.1
-
6
-
-
84959270948
-
GEMC1 is a critical regulator of multiciliated cell differentiation
-
COI: 1:CAS:528:DC%2BC28XjtlOht7c%3D
-
Terre, B. et al. GEMC1 is a critical regulator of multiciliated cell differentiation. EMBO J. 35, 942–960 (2016)
-
(2016)
EMBO J.
, vol.35
, pp. 942-960
-
-
Terre, B.1
-
7
-
-
84955688268
-
Gmnc is a master regulator of the multiciliated cell differentiation program
-
COI: 1:CAS:528:DC%2BC2MXhvVOqsbzJ
-
Zhou, F. et al. Gmnc is a master regulator of the multiciliated cell differentiation program. Curr. Biol. 25, 3267–3273 (2015)
-
(2015)
Curr. Biol.
, vol.25
, pp. 3267-3273
-
-
Zhou, F.1
-
8
-
-
84856460296
-
Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation
-
COI: 1:CAS:528:DC%2BC38XlsFyltg%3D%3D
-
Stubbs, J. L., Vladar, E. K., Axelrod, J. D. & Kintner, C. Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation. Nat. Cell Biol. 14, 140–147 (2012)
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 140-147
-
-
Stubbs, J.L.1
Vladar, E.K.2
Axelrod, J.D.3
Kintner, C.4
-
9
-
-
84903788691
-
Multicilin drives centriole biogenesis via E2f proteins
-
COI: 1:CAS:528:DC%2BC2cXhtFyrtr3L
-
Ma, L., Quigley, I., Omran, H. & Kintner, C. Multicilin drives centriole biogenesis via E2f proteins. Genes Dev. 28, 1461–1471 (2014)
-
(2014)
Genes Dev.
, vol.28
, pp. 1461-1471
-
-
Ma, L.1
Quigley, I.2
Omran, H.3
Kintner, C.4
-
10
-
-
85011416571
-
Rfx2 stabilizes Foxj1 binding at chromatin loops to enable multiciliated cell gene expression
-
Quigley, I. K. & Kintner, C. Rfx2 stabilizes Foxj1 binding at chromatin loops to enable multiciliated cell gene expression. PLoS Genet. 13, e1006538 (2017)
-
(2017)
PLoS Genet.
, vol.13
-
-
Quigley, I.K.1
Kintner, C.2
-
11
-
-
84857033077
-
RFX2 is broadly required for ciliogenesis during vertebrate development
-
COI: 1:CAS:528:DC%2BC38Xit12ju74%3D
-
Chung, M. I. et al. RFX2 is broadly required for ciliogenesis during vertebrate development. Dev. Biol. 363, 155–165 (2012)
-
(2012)
Dev. Biol.
, vol.363
, pp. 155-165
-
-
Chung, M.I.1
-
12
-
-
84906274398
-
MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia
-
COI: 1:CAS:528:DC%2BC2cXitVShsb7O
-
Boon, M. et al. MCIDAS mutations result in a mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Commun. 5, 4418 (2014)
-
(2014)
Nat. Commun.
, vol.5
-
-
Boon, M.1
-
13
-
-
84901651947
-
Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia
-
COI: 1:CAS:528:DC%2BC2cXmsVKmu7c%3D
-
Wallmeier, J. et al. Mutations in CCNO result in congenital mucociliary clearance disorder with reduced generation of multiple motile cilia. Nat. Genet. 46, 646–651 (2014)
-
(2014)
Nat. Genet.
, vol.46
, pp. 646-651
-
-
Wallmeier, J.1
-
14
-
-
0014291368
-
Reconstructions of centriole formation and ciliogenesis in mammalian lungs
-
COI: 1:STN:280:DyaF1czis1Smuw%3D%3D, PID: 5661997
-
Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell. Sci. 3, 207–230 (1968)
-
(1968)
J. Cell. Sci.
, vol.3
, pp. 207-230
-
-
Sorokin, S.P.1
-
15
-
-
0015141393
-
Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct
-
COI: 1:STN:280:DyaE38%2Fit1Kmtg%3D%3D
-
Dirksen, E. R. Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct. J. Cell. Biol. 51, 286–302 (1971)
-
(1971)
J. Cell. Biol.
, vol.51
, pp. 286-302
-
-
Dirksen, E.R.1
-
16
-
-
0015096359
-
The formation of basal bodies (centrioles) in the Rhesus monkey oviduct
-
COI: 1:STN:280:DyaE3M3msVeluw%3D%3D
-
Anderson, R. G. & Brenner, R. M. The formation of basal bodies (centrioles) in the Rhesus monkey oviduct. J. Cell. Biol. 50, 10–34 (1971)
-
(1971)
J. Cell. Biol.
, vol.50
, pp. 10-34
-
-
Anderson, R.G.1
Brenner, R.M.2
-
17
-
-
0014632354
-
Centriole replication during ciliogenesis in the chick tracheal epithelium
-
COI: 1:STN:280:DyaE3c%2FktVKgtQ%3D%3D
-
Kalnins, V. I. & Porter, K. R. Centriole replication during ciliogenesis in the chick tracheal epithelium. Z. Zellforsch. Mikrosk. Anat. 100, 1–30 (1969)
-
(1969)
Z. Zellforsch. Mikrosk. Anat.
, vol.100
, pp. 1-30
-
-
Kalnins, V.I.1
Porter, K.R.2
-
18
-
-
0014232224
-
An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis
-
COI: 1:STN:280:DyaF1c3nvVWltw%3D%3D
-
Steinman, R. M. An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis. Am. J. Anat. 122, 19–55 (1968)
-
(1968)
Am. J. Anat.
, vol.122
, pp. 19-55
-
-
Steinman, R.M.1
-
19
-
-
84922332985
-
Centriole amplification by mother and daughter centrioles differs in multiciliated cells
-
COI: 1:CAS:528:DC%2BC2cXhvVemtrjI, PID: 25307055
-
Al Jord, A. et al. Centriole amplification by mother and daughter centrioles differs in multiciliated cells. Nature 516, 104–107 (2014)
-
(2014)
Nature
, vol.516
, pp. 104-107
-
-
Al Jord, A.1
-
20
-
-
84885390501
-
Deuterosome-mediated centriole biogenesis
-
COI: 1:CAS:528:DC%2BC3sXhsFemsLrL
-
Klos Dehring, D. A. et al. Deuterosome-mediated centriole biogenesis. Dev. Cell. 27, 103–112 (2013)
-
(2013)
Dev. Cell.
, vol.27
, pp. 103-112
-
-
Klos Dehring, D.A.1
-
21
-
-
84893353424
-
The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis
-
COI: 1:CAS:528:DC%2BC3sXhslygur3N
-
Zhao, H. et al. The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis. Nat. Cell Biol. 15, 1434–1444 (2013)
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 1434-1444
-
-
Zhao, H.1
-
22
-
-
80054978334
-
A primary microcephaly protein complex forms a ring around parental centrioles
-
COI: 1:CAS:528:DC%2BC3MXht12hsrrP
-
Sir, J. H. et al. A primary microcephaly protein complex forms a ring around parental centrioles. Nat. Genet. 43, 1147–1153 (2011)
-
(2011)
Nat. Genet.
, vol.43
, pp. 1147-1153
-
-
Sir, J.H.1
-
23
-
-
79957895825
-
Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway
-
COI: 1:CAS:528:DC%2BC3MXmvVars74%3D
-
Marcet, B. et al. Control of vertebrate multiciliogenesis by miR-449 through direct repression of the Delta/Notch pathway. Nat. Cell Biol. 13, 693–699 (2011)
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 693-699
-
-
Marcet, B.1
-
24
-
-
84884930913
-
Myb promotes centriole amplification and later steps of the multiciliogenesis program
-
COI: 1:CAS:528:DC%2BC3sXhsl2nu7zI
-
Tan, F. E. et al. Myb promotes centriole amplification and later steps of the multiciliogenesis program. Development 140, 4277–4286 (2013)
-
(2013)
Development
, vol.140
, pp. 4277-4286
-
-
Tan, F.E.1
-
25
-
-
34250799719
-
Cdc20: a WD40 activator for a cell cycle degradation machine
-
COI: 1:CAS:528:DC%2BD2sXot1els78%3D
-
Yu, H. Cdc20: a WD40 activator for a cell cycle degradation machine. Mol. Cell 27, 3–16 (2007)
-
(2007)
Mol. Cell
, vol.27
, pp. 3-16
-
-
Yu, H.1
-
26
-
-
84901949738
-
miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110
-
COI: 1:CAS:528:DC%2BC2cXhtFygs7%2FN
-
Song, R. et al. miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature 510, 115–120 (2014)
-
(2014)
Nature
, vol.510
, pp. 115-120
-
-
Song, R.1
-
27
-
-
85030265282
-
Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit
-
COI: 1:CAS:528:DC%2BC2sXhsFajsbbP
-
Otto, T. et al. Cell cycle-targeting microRNAs promote differentiation by enforcing cell-cycle exit. Proc. Natl Acad. Sci. USA 114, 10660–10665 (2017)
-
(2017)
Proc. Natl Acad. Sci. USA
, vol.114
, pp. 10660-10665
-
-
Otto, T.1
-
28
-
-
84904341198
-
Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis
-
COI: 1:CAS:528:DC%2BC2cXhtVOit7bF
-
Wu, J. et al. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis. Proc. Natl Acad. Sci. USA 111, E2851–E2857 (2014)
-
(2014)
Proc. Natl Acad. Sci. USA
, vol.111
, pp. E2851-E2857
-
-
Wu, J.1
-
29
-
-
84941897834
-
miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways
-
COI: 1:CAS:528:DC%2BC2MXhsFeisLvL
-
Chevalier, B. et al. miR-34/449 control apical actin network formation during multiciliogenesis through small GTPase pathways. Nat. Commun. 6, 8386 (2015)
-
(2015)
Nat. Commun.
, vol.6
-
-
Chevalier, B.1
-
30
-
-
85013979294
-
Characterizing isomiR variants within the microRNA-34/449 family
-
COI: 1:CAS:528:DC%2BC2sXjsVSgtb4%3D
-
Mercey, O. et al. Characterizing isomiR variants within the microRNA-34/449 family. FEBS Lett. 591, 693–705 (2017)
-
(2017)
FEBS Lett.
, vol.591
, pp. 693-705
-
-
Mercey, O.1
-
31
-
-
84896544470
-
Proximity interactions among centrosome components identify regulators of centriole duplication
-
COI: 1:CAS:528:DC%2BC2cXjvFWgtL4%3D
-
Firat-Karalar, E. N., Rauniyar, N., Yates, J. R. 3rd & Stearns, T. Proximity interactions among centrosome components identify regulators of centriole duplication. Curr. Biol. 24, 664–670 (2014)
-
(2014)
Curr. Biol.
, vol.24
, pp. 664-670
-
-
Firat-Karalar, E.N.1
Rauniyar, N.2
Yates, J.R.3
Stearns, T.4
-
32
-
-
34249680274
-
p53 activation by knockdown technologies
-
Robu, M. E. et al. p53 activation by knockdown technologies. PLoS Genet. 3, e78 (2007)
-
(2007)
PLoS Genet.
, vol.3
-
-
Robu, M.E.1
-
33
-
-
84905989315
-
Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1
-
COI: 1:CAS:528:DC%2BC2cXhtlejtrvL
-
Werner, M. E. et al. Radial intercalation is regulated by the Par complex and the microtubule-stabilizing protein CLAMP/Spef1. J. Cell. Biol. 206, 367–376 (2014)
-
(2014)
J. Cell. Biol.
, vol.206
, pp. 367-376
-
-
Werner, M.E.1
-
35
-
-
69949118412
-
Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells
-
COI: 1:CAS:528:DC%2BD1MXhsVCiu7%2FJ
-
Tsou, M. F. et al. Polo kinase and separase regulate the mitotic licensing of centriole duplication in human cells. Dev. Cell 17, 344–354 (2009)
-
(2009)
Dev. Cell
, vol.17
, pp. 344-354
-
-
Tsou, M.F.1
-
36
-
-
84949551465
-
PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit
-
COI: 1:CAS:528:DC%2BC2MXhvFyktrvM
-
Kim, J., Lee, K. & Rhee, K. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit. Nat. Commun. 6, 10076 (2015)
-
(2015)
Nat. Commun.
, vol.6
-
-
Kim, J.1
Lee, K.2
Rhee, K.3
-
37
-
-
84861526865
-
Kendrin is a novel substrate for separase involved in the licensing of centriole duplication
-
COI: 1:CAS:528:DC%2BC38Xmt1amsLY%3D
-
Matsuo, K. et al. Kendrin is a novel substrate for separase involved in the licensing of centriole duplication. Curr. Biol. 22, 915–921 (2012)
-
(2012)
Curr. Biol.
, vol.22
, pp. 915-921
-
-
Matsuo, K.1
-
38
-
-
85030862147
-
Calibrated mitotic oscillator drives motile ciliogenesis
-
COI: 1:CAS:528:DC%2BC2sXhslOnsL%2FK
-
Al Jord, A. et al. Calibrated mitotic oscillator drives motile ciliogenesis. Science 358, 803–806 (2017)
-
(2017)
Science
, vol.358
, pp. 803-806
-
-
Al Jord, A.1
-
39
-
-
84937213168
-
The BioPlex network: a systematic exploration of the human interactome
-
COI: 1:CAS:528:DC%2BC2MXht1KgtL3I
-
Huttlin, E. L. et al. The BioPlex network: a systematic exploration of the human interactome. Cell 162, 425–440 (2015)
-
(2015)
Cell
, vol.162
, pp. 425-440
-
-
Huttlin, E.L.1
-
40
-
-
27144530248
-
Towards a proteome-scale map of the human protein-protein interaction network
-
COI: 1:CAS:528:DC%2BD2MXhtFahtLzP
-
Rual, J. F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005)
-
(2005)
Nature
, vol.437
, pp. 1173-1178
-
-
Rual, J.F.1
-
41
-
-
34547556427
-
Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity
-
COI: 1:CAS:528:DC%2BD2sXos1Crs7o%3D
-
Thein, K. H., Kleylein-Sohn, J., Nigg, E. A. & Gruneberg, U. Astrin is required for the maintenance of sister chromatid cohesion and centrosome integrity. J. Cell. Biol. 178, 345–354 (2007)
-
(2007)
J. Cell. Biol.
, vol.178
, pp. 345-354
-
-
Thein, K.H.1
Kleylein-Sohn, J.2
Nigg, E.A.3
Gruneberg, U.4
-
42
-
-
84907358923
-
The mitosis-regulating and protein-protein interaction activities of astrin are controlled by aurora-A-induced phosphorylation
-
COI: 1:CAS:528:DC%2BC2cXhslChur7I
-
Chiu, S. C. et al. The mitosis-regulating and protein-protein interaction activities of astrin are controlled by aurora-A-induced phosphorylation. Am. J. Physiol. Cell Physiol. 307, C466–C478 (2014)
-
(2014)
Am. J. Physiol. Cell Physiol.
, vol.307
, pp. C466-C478
-
-
Chiu, S.C.1
-
43
-
-
84890183187
-
The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors
-
Eguren, M. et al. The APC/C cofactor Cdh1 prevents replicative stress and p53-dependent cell death in neural progenitors. Nat. Commun. 4, 2880 (2013)
-
(2013)
Nat. Commun.
, vol.4
-
-
Eguren, M.1
-
44
-
-
84983261764
-
Phosphorylation of astrin regulates its kinetochore function
-
COI: 1:CAS:528:DC%2BC28Xhtlyjt7vE
-
Chung, H. J., Park, J. E., Lee, N. S., Kim, H. & Jang, C. Y. Phosphorylation of astrin regulates its kinetochore function. J. Biol. Chem. 291, 17579–17592 (2016)
-
(2016)
J. Biol. Chem.
, vol.291
, pp. 17579-17592
-
-
Chung, H.J.1
Park, J.E.2
Lee, N.S.3
Kim, H.4
Jang, C.Y.5
-
45
-
-
85010878111
-
Single-cell mRNA quantification and differential analysis with Census
-
COI: 1:CAS:528:DC%2BC2sXhtlKjsro%3D
-
Qiu, X. et al. Single-cell mRNA quantification and differential analysis with Census. Nat. Methods 14, 309–315 (2017)
-
(2017)
Nat. Methods
, vol.14
, pp. 309-315
-
-
Qiu, X.1
-
46
-
-
84929684999
-
Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets
-
COI: 1:CAS:528:DC%2BC2MXpt1Sgt7o%3D
-
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015)
-
(2015)
Cell
, vol.161
, pp. 1202-1214
-
-
Macosko, E.Z.1
-
47
-
-
84876996918
-
TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions
-
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013)
-
(2013)
Genome Biol.
, vol.14
-
-
Kim, D.1
-
48
-
-
84928987900
-
HTSeq—a Python framework to work with high-throughput sequencing data
-
COI: 1:CAS:528:DC%2BC28Xht1Sjt7vL
-
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015)
-
(2015)
Bioinformatics
, vol.31
, pp. 166-169
-
-
Anders, S.1
Pyl, P.T.2
Huber, W.3
-
49
-
-
84924629414
-
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2
-
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014)
-
(2014)
Genome Biol.
, vol.15
-
-
Love, M.I.1
Huber, W.2
Anders, S.3
-
50
-
-
84859210032
-
Fast gapped-read alignment with Bowtie 2
-
COI: 1:CAS:528:DC%2BC38Xjt1Oqt7c%3D
-
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012)
-
(2012)
Nat. Methods
, vol.9
, pp. 357-359
-
-
Langmead, B.1
Salzberg, S.L.2
-
51
-
-
77952567987
-
Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities
-
COI: 1:CAS:528:DC%2BC3cXns1SlsLc%3D
-
Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010)
-
(2010)
Mol. Cell
, vol.38
, pp. 576-589
-
-
Heinz, S.1
-
52
-
-
75749084075
-
NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis
-
COI: 1:CAS:528:DC%2BC3cXhtF2gsLc%3D
-
Boutin, C. et al. NeuroD1 induces terminal neuronal differentiation in olfactory neurogenesis. Proc. Natl Acad. Sci. USA 107, 1201–1206 (2010)
-
(2010)
Proc. Natl Acad. Sci. USA
, vol.107
, pp. 1201-1206
-
-
Boutin, C.1
-
53
-
-
44849104642
-
Efficient in vivo electroporation of the post-natal rodent forebrain
-
Boutin, C., Diestel, S., Desoeuvre, A., Tiveron, M. C. & Cremer, H. Efficient in vivo electroporation of the post-natal rodent forebrain. PLoS ONE 3, e1883 (2008)
-
(2008)
PLoS ONE
, vol.3
-
-
Boutin, C.1
Diestel, S.2
Desoeuvre, A.3
Tiveron, M.C.4
Cremer, H.5
-
54
-
-
70350465124
-
BMP inhibition initiates neural induction via FGF signaling and Zic genes
-
COI: 1:CAS:528:DC%2BD1MXhs1WktrbE
-
Marchal, L., Luxardi, G., Thome, V. & Kodjabachian, L. BMP inhibition initiates neural induction via FGF signaling and Zic genes. Proc. Natl Acad. Sci. USA 106, 17437–17442 (2009)
-
(2009)
Proc. Natl Acad. Sci. USA
, vol.106
, pp. 17437-17442
-
-
Marchal, L.1
Luxardi, G.2
Thome, V.3
Kodjabachian, L.4
-
55
-
-
84897506261
-
Xenopus embryonic epidermis as a mucociliary cellular ecosystem to assess the effect of sex hormones in a non-reproductive context
-
Castillo-Briceno, P. & Kodjabachian, L. Xenopus embryonic epidermis as a mucociliary cellular ecosystem to assess the effect of sex hormones in a non-reproductive context. Front. Zool. 11, 9 (2014)
-
(2014)
Front. Zool.
, vol.11
-
-
Castillo-Briceno, P.1
Kodjabachian, L.2
-
56
-
-
0032730001
-
A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos
-
COI: 1:CAS:528:DyaK1MXns1Kjtbc%3D, PID: 10518489
-
Deblandre, G. A., Wettstein, D. A., Koyano-Nakagawa, N. & Kintner, C. A two-step mechanism generates the spacing pattern of the ciliated cells in the skin of Xenopus embryos. Development 126, 4715–4728 (1999)
-
(1999)
Development
, vol.126
, pp. 4715-4728
-
-
Deblandre, G.A.1
Wettstein, D.A.2
Koyano-Nakagawa, N.3
Kintner, C.4
|