-
1
-
-
84906302930
-
Evolution and Management of the Irish Potato Famine Pathogen Phytophthora Infestans in Canada and the United States
-
Hwang, Y.T.;Wijekoon, C.; Kalischuk, M.; Johnson, D.; Howard, R.; Prüfer, D.; Kawchuk, L. Evolution and Management of the Irish Potato Famine Pathogen Phytophthora Infestans in Canada and the United States. Am. J. Potato Res. 2014, 91, 579-593
-
(2014)
Am. J. Potato Res
, vol.91
, pp. 579-593
-
-
Hwang, Y.T.1
Wijekoon, C.2
Kalischuk, M.3
Johnson, D.4
Howard, R.5
Prüfer, D.6
Kawchuk, L.7
-
2
-
-
58149247935
-
Characterization of Phytophthora infestans populations in Colombia: First report of the A2 mating type
-
Vargas, A.M.; Ocampo, L.M.Q.; Céspedes, M.C.; Carreño, N.; González, A.; Rojas, A.; Zuluaga, A.P.; Myers, K.; Fry, W.E.; Jiménez, P.; et al. Characterization of Phytophthora infestans populations in Colombia: First report of the A2 mating type. Phytopathology 2009, 99, 82-88
-
(2009)
Phytopathology
, vol.99
, pp. 82-88
-
-
Vargas, A.M.1
Ocampo, L.M.Q.2
Céspedes, M.C.3
Carreño, N.4
González, A.5
Rojas, A.6
Zuluaga, A.P.7
Myers, K.8
Fry, W.E.9
Jiménez, P.10
-
3
-
-
84981312032
-
Phytophthora infestans: New Tools (and Old Ones) Lead to New Understanding and Precision Management
-
Fry, W.E. Phytophthora infestans: New Tools (and Old Ones) Lead to New Understanding and Precision Management. Annu. Rev. Phytopathol. 2016, 54, 529-547
-
(2016)
Annu. Rev. Phytopathol
, vol.54
, pp. 529-547
-
-
Fry, W.E.1
-
4
-
-
55949086298
-
Phytophthora infestans on potato
-
European and Mediterranean Plant Protection Organization. Phytophthora infestans on potato. EPPO 2008, 38, 268-271
-
(2008)
EPPO
, vol.38
, pp. 268-271
-
-
-
6
-
-
4244049709
-
El tizón tardío de la papa: Phytophthora infestans
-
Instituto de Censores Jurados de Cuentas de España: Madrid, Spain
-
Henfling, J.A. El tizón tardío de la papa: Phytophthora infestans. In Boletin de Informacion Tecnica; Instituto de Censores Jurados de Cuentas de España: Madrid, Spain, 1987; p. 25
-
(1987)
Boletin de Informacion Tecnica
, pp. 25
-
-
Henfling, J.A.1
-
7
-
-
80051663310
-
Utility of Hyperspectral Data for Potato Late Blight Disease Detection
-
Ray, S.S.; Jain, N.; Arora, R.K.; Chavan, S.; Panigrahy, S. Utility of Hyperspectral Data for Potato Late Blight Disease Detection. J. Indian Soc. Remote Sens. 2011, 39, 161-169
-
(2011)
J. Indian Soc. Remote Sens
, vol.39
, pp. 161-169
-
-
Ray, S.S.1
Jain, N.2
Arora, R.K.3
Chavan, S.4
Panigrahy, S.5
-
8
-
-
85030226168
-
Assessing changes in potato canopy caused by late blight in organic production systems through UAV-based pushbroom imaging spectrometer
-
Franceschini, M.H.D.; Bartholomeus, H.; van Apeldoorn, D.; Suomalainen, J.; Kooistra, L. Assessing changes in potato canopy caused by late blight in organic production systems through UAV-based pushbroom imaging spectrometer. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 109-112
-
(2017)
Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci
, vol.42
, pp. 109-112
-
-
Franceschini, M.H.D.1
Bartholomeus, H.2
van Apeldoorn, D.3
Suomalainen, J.4
Kooistra, L.5
-
9
-
-
84939559109
-
Severity Identification of Potato Late Blight Disease from Crop Images Captured under Uncontrolled Environment
-
Montreal, QC, Canada, 1-4 June
-
Biswas, S.; Jagyasi, B.; Singh, B.P.; Lal, M. Severity Identification of Potato Late Blight Disease from Crop Images Captured under Uncontrolled Environment. In Proceedings of the 2014 IEEE Canada International Humanitarian Technology Conference-(IHTC), Montreal, QC, Canada, 1-4 June 2014; pp. 1-5
-
(2014)
Proceedings of the 2014 IEEE Canada International Humanitarian Technology Conference-(IHTC)
, pp. 1-5
-
-
Biswas, S.1
Jagyasi, B.2
Singh, B.P.3
Lal, M.4
-
10
-
-
84968862680
-
ScienceDirect Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle
-
Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A. ScienceDirect Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosyst. Eng. 2016, 148, 1-10
-
(2016)
Biosyst. Eng
, vol.148
, pp. 1-10
-
-
Sugiura, R.1
Tsuda, S.2
Tamiya, S.3
Itoh, A.4
-
11
-
-
85052088926
-
Machine Learning in Agriculture: A Review
-
Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674
-
(2018)
Sensors
, vol.18
, pp. 2674
-
-
Liakos, K.1
Busato, P.2
Moshou, D.3
Pearson, S.4
Bochtis, D.5
-
12
-
-
85052559305
-
Machine Learning Applications on Agricultural Datasets for Smart Farm Enhancement
-
Balducci, F.; Impedovo, D.; Pirlo, G. Machine Learning Applications on Agricultural Datasets for Smart Farm Enhancement. Machines 2018, 6, 38
-
(2018)
Machines
, vol.6
, pp. 38
-
-
Balducci, F.1
Impedovo, D.2
Pirlo, G.3
-
14
-
-
84932123229
-
Toward detecting crop diseases and pest by supervised learning
-
Corrales, D.C. Toward detecting crop diseases and pest by supervised learning. Ing. Univ. 2015, 19, 207-228
-
(2015)
Ing. Univ
, vol.19
, pp. 207-228
-
-
Corrales, D.C.1
-
15
-
-
84994071070
-
Comparative Study of Knowledge in Crop Diseases Using Machine Learning Techniques
-
Revathi, P.; Revathi, R.; Hemalatha, M. Comparative Study of Knowledge in Crop Diseases Using Machine Learning Techniques. Int. J. Comput. Sci. Inf. Technol. 2011, 2, 2180-2182
-
(2011)
Int. J. Comput. Sci. Inf. Technol
, vol.2
, pp. 2180-2182
-
-
Revathi, P.1
Revathi, R.2
Hemalatha, M.3
-
16
-
-
85016203027
-
Recent machine learning based approaches for disease detection and classification of agricultural products
-
Pune, India, 12-13 August
-
Tripathi, M.K.; Maktedar, D.D. Recent machine learning based approaches for disease detection and classification of agricultural products. In Proceedings of the 2016 International Conference on Computing Communication Control and automation (ICCUBEA), Pune, India, 12-13 August 2016; pp. 1-6
-
(2016)
Proceedings of the 2016 International Conference on Computing Communication Control and automation (ICCUBEA)
, pp. 1-6
-
-
Tripathi, M.K.1
Maktedar, D.D.2
-
17
-
-
85006276789
-
Artificial neural network for prediction of the area under the disease progress curve of tomato late blight
-
Alves, D.P.; Tomaz, R.S.; Laurindo, B.S.; Laurindo, R.D.F.; Cruz, C.D.; Nick, C.; Silva, D.J.H.D. Artificial neural network for prediction of the area under the disease progress curve of tomato late blight. Sci. Agric. 2017, 74, 51-59
-
(2017)
Sci. Agric
, vol.74
, pp. 51-59
-
-
Alves, D.P.1
Tomaz, R.S.2
Laurindo, B.S.3
Laurindo, R.D.F.4
Cruz, C.D.5
Nick, C.6
Silva, D.J.H.D.7
-
18
-
-
4644270221
-
Automatic detection of 'yellow rust' in wheat using reflectance measurements and neural networks
-
Moshou, D.; Bravo, C.;West, J.;Wahlen, S.; McCartney, A.; Ramon, H. Automatic detection of 'yellow rust' in wheat using reflectance measurements and neural networks. Comput. Electron. Agric. 2004, 44, 173-188
-
(2004)
Comput. Electron. Agric
, vol.44
, pp. 173-188
-
-
Moshou, D.1
Bravo, C.2
West, J.3
Wahlen, S.4
McCartney, A.5
Ramon, H.6
-
19
-
-
40349090020
-
Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN)
-
Wang, X.; Zhang, M.; Zhu, J.; Geng, S. Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN). Int. J. Remote Sens. 2008, 29, 1693-1706
-
(2008)
Int. J. Remote Sens
, vol.29
, pp. 1693-1706
-
-
Wang, X.1
Zhang, M.2
Zhu, J.3
Geng, S.4
-
20
-
-
0023842981
-
Neural networks. II. What are they and why is everybody so interested in them now?
-
Wasserman, P.D.; Schwartz, T. Neural networks. II. What are they and why is everybody so interested in them now? IEEE Expert 1988, 3, 10-15
-
(1988)
IEEE Expert
, vol.3
, pp. 10-15
-
-
Wasserman, P.D.1
Schwartz, T.2
-
22
-
-
85014900115
-
Satellite image processing for precision agriculture and agroindustry using convolutional neural network and genetic algorithm
-
IOP Publishing: Bristol, UK
-
Firdaus, P.; Arkeman, Y.; Buono, A.; Hermadi, I. Satellite image processing for precision agriculture and agroindustry using convolutional neural network and genetic algorithm. In IOP Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; p. 7
-
(2017)
IOP Earth and Environmental Science
, pp. 7
-
-
Firdaus, P.1
Arkeman, Y.2
Buono, A.3
Hermadi, I.4
-
23
-
-
84978378744
-
Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification
-
Sladojevic, S.; Arsenovic, M.; Anderla, A.; Culibrk, D.; Stefanovic, D. Deep Neural Networks Based Recognition of Plant Diseases by Leaf Image Classification. Comput. Intell. Neurosci. 2016, 2016, 11
-
(2016)
Comput. Intell. Neurosci
, vol.2016
, pp. 11
-
-
Sladojevic, S.1
Arsenovic, M.2
Anderla, A.3
Culibrk, D.4
Stefanovic, D.5
-
24
-
-
4043137356
-
A Tutorial on Support Vector Regression
-
Smola, A.J.; Sch, B.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199-222
-
(2004)
Stat. Comput
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Sch, B.2
Schölkopf, B.3
-
25
-
-
85057943047
-
Random decision forests
-
Montreal, QC, Canada, 14-16 August
-
Ho, T.K. Random decision forests. In Proceedings of the IEEE Third International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14-16 August 1995; pp. 278-282
-
(1995)
Proceedings of the IEEE Third International Conference on Document Analysis and Recognition
, pp. 278-282
-
-
Ho, T.K.1
-
27
-
-
84975755388
-
Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries
-
Haghighattalab, A.; Pérez, L.G.; Mondal, S.; Singh, D.; Schinstock, D.; Rutkoski, J.; Ortiz-Monasterio, I.; Singh, R.P.; Goodin, D.; Poland, J. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant. Methods 2016, 12, 35
-
(2016)
Plant. Methods
, vol.12
, pp. 35
-
-
Haghighattalab, A.1
Pérez, L.G.2
Mondal, S.3
Singh, D.4
Schinstock, D.5
Rutkoski, J.6
Ortiz-Monasterio, I.7
Singh, R.P.8
Goodin, D.9
Poland, J.10
-
28
-
-
0032732676
-
The use of the empirical line method to calibrate remotely sensed data to reflectance
-
Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653-2662
-
(1999)
Int. J. Remote Sens
, vol.20
, pp. 2653-2662
-
-
Smith, G.M.1
Milton, E.J.2
-
29
-
-
0026120032
-
Small sample size effects in statistical pattern recognition: Recommendations for practitioners
-
Raudys, S.; Jain, A. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 252-264
-
(1991)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.13
, pp. 252-264
-
-
Raudys, S.1
Jain, A.2
-
30
-
-
85164392958
-
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
-
Montreal, QC, Canada, 20-25 August
-
Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20-25 August 1995; pp. 1137-1143
-
(1995)
Proceedings of the 14th International Joint Conference on Artificial Intelligence
, pp. 1137-1143
-
-
Kohavi, R.1
-
31
-
-
84941620184
-
Adam: A Method for Stochastic Optimization
-
Banff, AB, Canada, 14-16 April
-
Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, Banff, AB, Canada, 14-16 April 2014; pp. 1-15
-
(2014)
Proceedings of the 3rd International Conference on Learning Representations
, pp. 1-15
-
-
Kingma, D.P.1
Ba, J.2
-
32
-
-
84969584486
-
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
-
Lille, France, 6-11 July
-
Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6-11 July 2015; pp. 81-87
-
(2015)
Proceedings of the 32nd International Conference on Machine Learning
, pp. 81-87
-
-
Ioffe, S.1
Szegedy, C.2
-
33
-
-
84904163933
-
Dropout: A SimpleWay to Prevent Neural Networks from Overfitting
-
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A SimpleWay to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929-1958
-
(2014)
J. Mach. Learn. Res
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
34
-
-
30444437204
-
Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
-
Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79-82
-
(2005)
Clim. Res
, vol.30
, pp. 79-82
-
-
Willmott, C.J.1
Matsuura, K.2
-
35
-
-
58049155724
-
Ambiguities inherent in sums-of-squares-based error statistics
-
Willmott, C.J.; Matsuura, K.; Robeson, S.M. Ambiguities inherent in sums-of-squares-based error statistics. Atmos. Environ. 2009, 43, 749-752
-
(2009)
Atmos. Environ
, vol.43
, pp. 749-752
-
-
Willmott, C.J.1
Matsuura, K.2
Robeson, S.M.3
-
36
-
-
42249098860
-
Phytophthora infestans: The plant (and R gene) destroyer
-
Fry, W.E. Phytophthora infestans: The plant (and R gene) destroyer. Mol. Plant Pathol. 2008, 9, 385-402
-
(2008)
Mol. Plant Pathol
, vol.9
, pp. 385-402
-
-
Fry, W.E.1
-
37
-
-
84902717183
-
Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions
-
Ali, A.; Alexandersson, E.; Sandin, M.; Resjö, S.; Lenman, M.; Hedley, P.; Levander, F.; Andreasson, E. Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genom. 2014, 15, 497
-
(2014)
BMC Genom
, vol.15
, pp. 497
-
-
Ali, A.1
Alexandersson, E.2
Sandin, M.3
Resjö, S.4
Lenman, M.5
Hedley, P.6
Levander, F.7
Andreasson, E.8
-
38
-
-
85021430611
-
Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers
-
Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers. Sci. Rep. 2017, 7, 4125
-
(2017)
Sci. Rep
, vol.7
, pp. 4125
-
-
Zhu, H.1
Chu, B.2
Zhang, C.3
Liu, F.4
Jiang, L.5
He, Y.6
-
39
-
-
85048165439
-
Late Blight of Potato (Phytophthora infestans) I: Fungicides Application and Associated Challenges
-
Majeed, A.; Muhammad, Z.; Ullah, Z.; Ullah, R.; Ahmad, H. Late Blight of Potato (Phytophthora infestans) I: Fungicides Application and Associated Challenges. Turk. J. Agric. Food Sci. Technol. 2017, 5, 261-266
-
(2017)
Turk. J. Agric. Food Sci. Technol
, vol.5
, pp. 261-266
-
-
Majeed, A.1
Muhammad, Z.2
Ullah, Z.3
Ullah, R.4
Ahmad, H.5
-
40
-
-
85019946776
-
Big Data for weed control and crop protection
-
Van Evert, F.K.; Fountas, S.; Jakovetic, D.; Crnojevic, V.; Travlos, I.; Kempenaar, C. Big Data for weed control and crop protection. Weed Res. 2017, 57, 218-233
-
(2017)
Weed Res
, vol.57
, pp. 218-233
-
-
Van Evert, F.K.1
Fountas, S.2
Jakovetic, D.3
Crnojevic, V.4
Travlos, I.5
Kempenaar, C.6
-
41
-
-
84898989329
-
Deep Neural Networks for Object Detection
-
The MIT Press: Cambridge, MA, USA
-
Szegedy, C. Deep Neural Networks for Object Detection. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2013; pp. 2553-2561
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2553-2561
-
-
Szegedy, C.1
|