메뉴 건너뛰기




Volumn 10, Issue 10, 2018, Pages

Evaluating late blight severity in potato crops using unmanned aerial vehicles and machine learning algorithms

Author keywords

Deep learning; Multispectral; Neural networks; Phytophthora infestans; Remote sensing; UAV

Indexed keywords

ANTENNAS; CONVOLUTION; CROPS; DECISION TREES; DEEP LEARNING; DEEP NEURAL NETWORKS; FORECASTING; MULTILAYER NEURAL NETWORKS; MULTILAYERS; NEURAL NETWORKS; PLANTS (BOTANY); REMOTE SENSING; UNMANNED AERIAL VEHICLES (UAV);

EID: 85055457969     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs10101513     Document Type: Article
Times cited : (97)

References (41)
  • 1
    • 84906302930 scopus 로고    scopus 로고
    • Evolution and Management of the Irish Potato Famine Pathogen Phytophthora Infestans in Canada and the United States
    • Hwang, Y.T.;Wijekoon, C.; Kalischuk, M.; Johnson, D.; Howard, R.; Prüfer, D.; Kawchuk, L. Evolution and Management of the Irish Potato Famine Pathogen Phytophthora Infestans in Canada and the United States. Am. J. Potato Res. 2014, 91, 579-593
    • (2014) Am. J. Potato Res , vol.91 , pp. 579-593
    • Hwang, Y.T.1    Wijekoon, C.2    Kalischuk, M.3    Johnson, D.4    Howard, R.5    Prüfer, D.6    Kawchuk, L.7
  • 3
    • 84981312032 scopus 로고    scopus 로고
    • Phytophthora infestans: New Tools (and Old Ones) Lead to New Understanding and Precision Management
    • Fry, W.E. Phytophthora infestans: New Tools (and Old Ones) Lead to New Understanding and Precision Management. Annu. Rev. Phytopathol. 2016, 54, 529-547
    • (2016) Annu. Rev. Phytopathol , vol.54 , pp. 529-547
    • Fry, W.E.1
  • 4
    • 55949086298 scopus 로고    scopus 로고
    • Phytophthora infestans on potato
    • European and Mediterranean Plant Protection Organization. Phytophthora infestans on potato. EPPO 2008, 38, 268-271
    • (2008) EPPO , vol.38 , pp. 268-271
  • 6
    • 4244049709 scopus 로고
    • El tizón tardío de la papa: Phytophthora infestans
    • Instituto de Censores Jurados de Cuentas de España: Madrid, Spain
    • Henfling, J.A. El tizón tardío de la papa: Phytophthora infestans. In Boletin de Informacion Tecnica; Instituto de Censores Jurados de Cuentas de España: Madrid, Spain, 1987; p. 25
    • (1987) Boletin de Informacion Tecnica , pp. 25
    • Henfling, J.A.1
  • 10
    • 84968862680 scopus 로고    scopus 로고
    • ScienceDirect Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle
    • Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A. ScienceDirect Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosyst. Eng. 2016, 148, 1-10
    • (2016) Biosyst. Eng , vol.148 , pp. 1-10
    • Sugiura, R.1    Tsuda, S.2    Tamiya, S.3    Itoh, A.4
  • 12
    • 85052559305 scopus 로고    scopus 로고
    • Machine Learning Applications on Agricultural Datasets for Smart Farm Enhancement
    • Balducci, F.; Impedovo, D.; Pirlo, G. Machine Learning Applications on Agricultural Datasets for Smart Farm Enhancement. Machines 2018, 6, 38
    • (2018) Machines , vol.6 , pp. 38
    • Balducci, F.1    Impedovo, D.2    Pirlo, G.3
  • 14
    • 84932123229 scopus 로고    scopus 로고
    • Toward detecting crop diseases and pest by supervised learning
    • Corrales, D.C. Toward detecting crop diseases and pest by supervised learning. Ing. Univ. 2015, 19, 207-228
    • (2015) Ing. Univ , vol.19 , pp. 207-228
    • Corrales, D.C.1
  • 15
    • 84994071070 scopus 로고    scopus 로고
    • Comparative Study of Knowledge in Crop Diseases Using Machine Learning Techniques
    • Revathi, P.; Revathi, R.; Hemalatha, M. Comparative Study of Knowledge in Crop Diseases Using Machine Learning Techniques. Int. J. Comput. Sci. Inf. Technol. 2011, 2, 2180-2182
    • (2011) Int. J. Comput. Sci. Inf. Technol , vol.2 , pp. 2180-2182
    • Revathi, P.1    Revathi, R.2    Hemalatha, M.3
  • 17
    • 85006276789 scopus 로고    scopus 로고
    • Artificial neural network for prediction of the area under the disease progress curve of tomato late blight
    • Alves, D.P.; Tomaz, R.S.; Laurindo, B.S.; Laurindo, R.D.F.; Cruz, C.D.; Nick, C.; Silva, D.J.H.D. Artificial neural network for prediction of the area under the disease progress curve of tomato late blight. Sci. Agric. 2017, 74, 51-59
    • (2017) Sci. Agric , vol.74 , pp. 51-59
    • Alves, D.P.1    Tomaz, R.S.2    Laurindo, B.S.3    Laurindo, R.D.F.4    Cruz, C.D.5    Nick, C.6    Silva, D.J.H.D.7
  • 18
    • 4644270221 scopus 로고    scopus 로고
    • Automatic detection of 'yellow rust' in wheat using reflectance measurements and neural networks
    • Moshou, D.; Bravo, C.;West, J.;Wahlen, S.; McCartney, A.; Ramon, H. Automatic detection of 'yellow rust' in wheat using reflectance measurements and neural networks. Comput. Electron. Agric. 2004, 44, 173-188
    • (2004) Comput. Electron. Agric , vol.44 , pp. 173-188
    • Moshou, D.1    Bravo, C.2    West, J.3    Wahlen, S.4    McCartney, A.5    Ramon, H.6
  • 19
    • 40349090020 scopus 로고    scopus 로고
    • Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN)
    • Wang, X.; Zhang, M.; Zhu, J.; Geng, S. Spectral prediction of Phytophthora infestans infection on tomatoes using artificial neural network (ANN). Int. J. Remote Sens. 2008, 29, 1693-1706
    • (2008) Int. J. Remote Sens , vol.29 , pp. 1693-1706
    • Wang, X.1    Zhang, M.2    Zhu, J.3    Geng, S.4
  • 20
    • 0023842981 scopus 로고
    • Neural networks. II. What are they and why is everybody so interested in them now?
    • Wasserman, P.D.; Schwartz, T. Neural networks. II. What are they and why is everybody so interested in them now? IEEE Expert 1988, 3, 10-15
    • (1988) IEEE Expert , vol.3 , pp. 10-15
    • Wasserman, P.D.1    Schwartz, T.2
  • 22
    • 85014900115 scopus 로고    scopus 로고
    • Satellite image processing for precision agriculture and agroindustry using convolutional neural network and genetic algorithm
    • IOP Publishing: Bristol, UK
    • Firdaus, P.; Arkeman, Y.; Buono, A.; Hermadi, I. Satellite image processing for precision agriculture and agroindustry using convolutional neural network and genetic algorithm. In IOP Earth and Environmental Science; IOP Publishing: Bristol, UK, 2017; p. 7
    • (2017) IOP Earth and Environmental Science , pp. 7
    • Firdaus, P.1    Arkeman, Y.2    Buono, A.3    Hermadi, I.4
  • 24
    • 4043137356 scopus 로고    scopus 로고
    • A Tutorial on Support Vector Regression
    • Smola, A.J.; Sch, B.; Schölkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199-222
    • (2004) Stat. Comput , vol.14 , pp. 199-222
    • Smola, A.J.1    Sch, B.2    Schölkopf, B.3
  • 28
    • 0032732676 scopus 로고    scopus 로고
    • The use of the empirical line method to calibrate remotely sensed data to reflectance
    • Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653-2662
    • (1999) Int. J. Remote Sens , vol.20 , pp. 2653-2662
    • Smith, G.M.1    Milton, E.J.2
  • 29
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: Recommendations for practitioners
    • Raudys, S.; Jain, A. Small sample size effects in statistical pattern recognition: Recommendations for practitioners. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 252-264
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell , vol.13 , pp. 252-264
    • Raudys, S.1    Jain, A.2
  • 30
    • 85164392958 scopus 로고
    • A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
    • Montreal, QC, Canada, 20-25 August
    • Kohavi, R. A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20-25 August 1995; pp. 1137-1143
    • (1995) Proceedings of the 14th International Joint Conference on Artificial Intelligence , pp. 1137-1143
    • Kohavi, R.1
  • 32
    • 84969584486 scopus 로고    scopus 로고
    • Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
    • Lille, France, 6-11 July
    • Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 6-11 July 2015; pp. 81-87
    • (2015) Proceedings of the 32nd International Conference on Machine Learning , pp. 81-87
    • Ioffe, S.1    Szegedy, C.2
  • 34
    • 30444437204 scopus 로고    scopus 로고
    • Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
    • Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79-82
    • (2005) Clim. Res , vol.30 , pp. 79-82
    • Willmott, C.J.1    Matsuura, K.2
  • 35
    • 58049155724 scopus 로고    scopus 로고
    • Ambiguities inherent in sums-of-squares-based error statistics
    • Willmott, C.J.; Matsuura, K.; Robeson, S.M. Ambiguities inherent in sums-of-squares-based error statistics. Atmos. Environ. 2009, 43, 749-752
    • (2009) Atmos. Environ , vol.43 , pp. 749-752
    • Willmott, C.J.1    Matsuura, K.2    Robeson, S.M.3
  • 36
    • 42249098860 scopus 로고    scopus 로고
    • Phytophthora infestans: The plant (and R gene) destroyer
    • Fry, W.E. Phytophthora infestans: The plant (and R gene) destroyer. Mol. Plant Pathol. 2008, 9, 385-402
    • (2008) Mol. Plant Pathol , vol.9 , pp. 385-402
    • Fry, W.E.1
  • 37
    • 84902717183 scopus 로고    scopus 로고
    • Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions
    • Ali, A.; Alexandersson, E.; Sandin, M.; Resjö, S.; Lenman, M.; Hedley, P.; Levander, F.; Andreasson, E. Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genom. 2014, 15, 497
    • (2014) BMC Genom , vol.15 , pp. 497
    • Ali, A.1    Alexandersson, E.2    Sandin, M.3    Resjö, S.4    Lenman, M.5    Hedley, P.6    Levander, F.7    Andreasson, E.8
  • 38
    • 85021430611 scopus 로고    scopus 로고
    • Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers
    • Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers. Sci. Rep. 2017, 7, 4125
    • (2017) Sci. Rep , vol.7 , pp. 4125
    • Zhu, H.1    Chu, B.2    Zhang, C.3    Liu, F.4    Jiang, L.5    He, Y.6
  • 39
    • 85048165439 scopus 로고    scopus 로고
    • Late Blight of Potato (Phytophthora infestans) I: Fungicides Application and Associated Challenges
    • Majeed, A.; Muhammad, Z.; Ullah, Z.; Ullah, R.; Ahmad, H. Late Blight of Potato (Phytophthora infestans) I: Fungicides Application and Associated Challenges. Turk. J. Agric. Food Sci. Technol. 2017, 5, 261-266
    • (2017) Turk. J. Agric. Food Sci. Technol , vol.5 , pp. 261-266
    • Majeed, A.1    Muhammad, Z.2    Ullah, Z.3    Ullah, R.4    Ahmad, H.5
  • 41
    • 84898989329 scopus 로고    scopus 로고
    • Deep Neural Networks for Object Detection
    • The MIT Press: Cambridge, MA, USA
    • Szegedy, C. Deep Neural Networks for Object Detection. In Advances in Neural Information Processing Systems; The MIT Press: Cambridge, MA, USA, 2013; pp. 2553-2561
    • (2013) Advances in Neural Information Processing Systems , pp. 2553-2561
    • Szegedy, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.