메뉴 건너뛰기




Volumn 7, Issue 1, 2017, Pages

Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; IMAGE PROCESSING; MACHINE LEARNING; PHENOTYPE; PLANT DISEASE; PROCEDURES; SPECTROSCOPY; TOBACCO;

EID: 85021430611     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/s41598-017-04501-2     Document Type: Article
Times cited : (154)

References (39)
  • 1
    • 0242658547 scopus 로고    scopus 로고
    • The potential of optical canopy measurement for targeted control of field crop diseases
    • West, J. S. et al. The potential of optical canopy measurement for targeted control of field crop diseases. Annu. Rev. Phytopathol. 41, 593-614 (2003).
    • (2003) Annu. Rev. Phytopathol. , vol.41 , pp. 593-614
    • West, J.S.1
  • 2
    • 77950515899 scopus 로고    scopus 로고
    • A review of advanced techniques for detecting plant diseases
    • Sankaran, S., Mishra, A., Ehsani, R. & Davis, C. A review of advanced techniques for detecting plant diseases. Comput. Electron. Agr 72, 1-13 (2010).
    • (2010) Comput. Electron. Agr , vol.72 , pp. 1-13
    • Sankaran, S.1    Mishra, A.2    Ehsani, R.3    Davis, C.4
  • 3
    • 18144441008 scopus 로고    scopus 로고
    • Innovative tools for detection of plant pathogenic viruses and bacteria
    • López, M. M. et al. Innovative tools for detection of plant pathogenic viruses and bacteria. Int. Microbiol. 6, 233-243 (2003).
    • (2003) Int. Microbiol. , vol.6 , pp. 233-243
    • López, M.M.1
  • 4
    • 84947785806 scopus 로고    scopus 로고
    • Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging
    • Xie, C., Shao, Y., Li, X. & He, Y. Detection of early blight and late blight diseases on tomato leaves using hyperspectral imaging. Sci. Rep. 5, 16564 (2015).
    • (2015) Sci. Rep , vol.5 , pp. 16564
    • Xie, C.1    Shao, Y.2    Li, X.3    He, Y.4
  • 5
    • 35548953824 scopus 로고    scopus 로고
    • Hyperspectral imaging-an emerging process analytical tool for food quality and safety control
    • Gowen, A., Odonnell, C., Cullen, P., Downey, G. & Frias, J. Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18, 590-598 (2007).
    • (2007) Trends Food Sci. Technol. , vol.18 , pp. 590-598
    • Gowen, A.1    Odonnell, C.2    Cullen, P.3    Downey, G.4    Frias, J.5
  • 6
    • 84923122811 scopus 로고    scopus 로고
    • Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry
    • Liu, D., Sun, D. W. & Zeng, X. A. Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food Bioprocess Tech. 7, 307-323 (2014).
    • (2014) Food Bioprocess Tech. , vol.7 , pp. 307-323
    • Liu, D.1    Sun, D.W.2    Zeng, X.A.3
  • 7
    • 84920158671 scopus 로고    scopus 로고
    • Hyperspectral imaging for mapping of total nitrogen spatial distribution in pepper plant
    • Yu, K. Q. et al. Hyperspectral imaging for mapping of total nitrogen spatial distribution in pepper plant. PloS one 9, e116205 (2014).
    • (2014) PloS One , vol.9 , pp. e116205
    • Yu, K.Q.1
  • 8
    • 84875285582 scopus 로고    scopus 로고
    • Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging
    • Zhang, X., Liu, F., He, Y. & Gong, X. Detecting macronutrients content and distribution in oilseed rape leaves based on hyperspectral imaging. Biosyst. Eng. 115, 56-65 (2013).
    • (2013) Biosyst. Eng. , vol.115 , pp. 56-65
    • Zhang, X.1    Liu, F.2    He, Y.3    Gong, X.4
  • 9
    • 84922311677 scopus 로고    scopus 로고
    • Recent applications of hyperspectral imaging in microbiology
    • Gowen, A. A., Feng, Y., Gaston, E. & Valdramidis, V. Recent applications of hyperspectral imaging in microbiology. Talanta 137, 43-54 (2015).
    • (2015) Talanta , vol.137 , pp. 43-54
    • Gowen, A.A.1    Feng, Y.2    Gaston, E.3    Valdramidis, V.4
  • 10
    • 84856072377 scopus 로고    scopus 로고
    • Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases
    • Mahlein, A. K., Steiner, U., Hillnhütter, C., Dehne, H. W. & Oerke, E. C. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant methods 8, 1 (2012).
    • (2012) Plant Methods , vol.8 , pp. 1
    • Mahlein, A.K.1    Steiner, U.2    Hillnhütter, C.3    Dehne, H.W.4    Oerke, E.C.5
  • 11
    • 35948985621 scopus 로고    scopus 로고
    • Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging
    • Huang, W. et al. Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precis. Agric. 8, 187-197 (2007).
    • (2007) Precis. Agric. , vol.8 , pp. 187-197
    • Huang, W.1
  • 12
    • 84940180182 scopus 로고    scopus 로고
    • Application of visible and near-infrared hyperspectral imaging to determine soluble protein content in oilseed rape leaves
    • Zhang, C., Liu, F., Kong, W. & He, Y. Application of visible and near-infrared hyperspectral imaging to determine soluble protein content in oilseed rape leaves. Sensors 15, 16576-16588 (2015).
    • (2015) Sensors , vol.15 , pp. 16576-16588
    • Zhang, C.1    Liu, F.2    Kong, W.3    He, Y.4
  • 13
    • 84859946496 scopus 로고    scopus 로고
    • Investigation of fungal development in maize kernels using NIR hyperspectral imaging and multivariate data analysis
    • Williams, P. J., Geladi, P., Britz, T. J. & Manley, M. Investigation of fungal development in maize kernels using NIR hyperspectral imaging and multivariate data analysis. J. Cereal. Sci. 55, 272-278 (2012).
    • (2012) J. Cereal. Sci. , vol.55 , pp. 272-278
    • Williams, P.J.1    Geladi, P.2    Britz, T.J.3    Manley, M.4
  • 14
    • 77956892823 scopus 로고    scopus 로고
    • Early detection and classification of plant diseases with support vector machines
    • Rumpf, T. et al. Early detection and classification of plant diseases with support vector machines. Comput. Electron. Agr 74, 91-99 (2010).
    • (2010) Comput. Electron. Agr , vol.74 , pp. 91-99
    • Rumpf, T.1
  • 15
    • 78149466910 scopus 로고    scopus 로고
    • Early detection of toxigenic fungi on maize by hyperspectral imaging analysis
    • Del Fiore, A. et al. Early detection of toxigenic fungi on maize by hyperspectral imaging analysis. Int. J. Food Microbiol. 144, 64-71 (2010).
    • (2010) Int. J. Food Microbiol. , vol.144 , pp. 64-71
    • Del Fiore, A.1
  • 16
    • 84855870398 scopus 로고    scopus 로고
    • Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes
    • Weber, V. S. et al. Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crops Res. 128, 82-90 (2012).
    • (2012) Field Crops Res. , vol.128 , pp. 82-90
    • Weber, V.S.1
  • 17
    • 84855866573 scopus 로고    scopus 로고
    • Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef
    • ElMasry, G., Sun, D. W. & Allen, P. Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. J. Food Eng. 110, 127-140 (2012).
    • (2012) J. Food Eng. , vol.110 , pp. 127-140
    • ElMasry, G.1    Sun, D.W.2    Allen, P.3
  • 18
    • 63149166446 scopus 로고    scopus 로고
    • Image pattern classification for the identification of disease causing agents in plants
    • Camargo, A. & Smith, J. S. Image pattern classification for the identification of disease causing agents in plants. Comput. Electron. Agr. 66, 121-125 (2009).
    • (2009) Comput. Electron. Agr. , vol.66 , pp. 121-125
    • Camargo, A.1    Smith, J.S.2
  • 19
    • 84944145592 scopus 로고    scopus 로고
    • Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification
    • Cen, H., Lu, R., Zhu, Q. & Mendoza, F. Nondestructive detection of chilling injury in cucumber fruit using hyperspectral imaging with feature selection and supervised classification. Postharvest Biol. Technol. 111, 352-361 (2016).
    • (2016) Postharvest Biol. Technol. , vol.111 , pp. 352-361
    • Cen, H.1    Lu, R.2    Zhu, Q.3    Mendoza, F.4
  • 20
    • 9244251098 scopus 로고    scopus 로고
    • Comparison of artificial neural networks and statistical classifiers in apple sorting using textural features
    • Kavdlr, I. & Guyer, D. E. Comparison of artificial neural networks and statistical classifiers in apple sorting using textural features. Biosyst. Eng. 89, 331-344 (2004).
    • (2004) Biosyst. Eng. , vol.89 , pp. 331-344
    • Kavdlr, I.1    Guyer, D.E.2
  • 21
    • 84957805044 scopus 로고    scopus 로고
    • Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine
    • Zhang, C. et al. Hyperspectral imaging analysis for ripeness evaluation of strawberry with support vector machine. J. Food Eng. 179, 11-18 (2016).
    • (2016) J. Food Eng. , vol.179 , pp. 11-18
    • Zhang, C.1
  • 22
    • 84897916507 scopus 로고    scopus 로고
    • Ripeness classification of astringent persimmon using hyperspectral imaging technique
    • Wei, X., Liu, F., Qiu, Z., Shao, Y. & He, Y. Ripeness classification of astringent persimmon using hyperspectral imaging technique. Food Bioprocess Tech. 7, 1371-1380 (2014).
    • (2014) Food Bioprocess Tech. , vol.7 , pp. 1371-1380
    • Wei, X.1    Liu, F.2    Qiu, Z.3    Shao, Y.4    He, Y.5
  • 23
    • 84898904865 scopus 로고    scopus 로고
    • Combination of spectra and texture data of hyperspectral imaging for prediction of pH in salted meat
    • Liu, D., Pu, H., Sun, D. W., Wang, L. & Zeng, X. A. Combination of spectra and texture data of hyperspectral imaging for prediction of pH in salted meat. Food Chem. 160, 330-337 (2014).
    • (2014) Food Chem. , vol.160 , pp. 330-337
    • Liu, D.1    Pu, H.2    Sun, D.W.3    Wang, L.4    Zeng, X.A.5
  • 24
    • 84884405197 scopus 로고    scopus 로고
    • Rapid detection of total viable count (TVC) in pork meat by hyperspectral imaging
    • Huang, L., Zhao, J., Chen, Q. & Zhang, Y. Rapid detection of total viable count (TVC) in pork meat by hyperspectral imaging. Food Res. Int. 54, 821-828 (2013).
    • (2013) Food Res. Int. , vol.54 , pp. 821-828
    • Huang, L.1    Zhao, J.2    Chen, Q.3    Zhang, Y.4
  • 25
    • 63049095883 scopus 로고    scopus 로고
    • Application of successive projections algorithm for variable selection to determine organic acids of plum vinegar
    • Liu, F. & He, Y. Application of successive projections algorithm for variable selection to determine organic acids of plum vinegar. Food Chem. 115, 1430-1436 (2009).
    • (2009) Food Chem. , vol.115 , pp. 1430-1436
    • Liu, F.1    He, Y.2
  • 26
    • 42649109407 scopus 로고    scopus 로고
    • Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis
    • Liu, F., He, Y. & Wang, L. Determination of effective wavelengths for discrimination of fruit vinegars using near infrared spectroscopy and multivariate analysis. Anal. Chim. Acta 615, 10-17 (2008).
    • (2008) Anal. Chim. Acta , vol.615 , pp. 10-17
    • Liu, F.1    He, Y.2    Wang, L.3
  • 27
    • 0037327654 scopus 로고    scopus 로고
    • Early disease detection in wheat fields using spectral reflectance
    • Bravo, C., Moshou, D., West, J., McCartney, A. & Ramon, H. Early disease detection in wheat fields using spectral reflectance. Biosyst. Eng. 84, 137-145 (2003).
    • (2003) Biosyst. Eng. , vol.84 , pp. 137-145
    • Bravo, C.1    Moshou, D.2    West, J.3    McCartney, A.4    Ramon, H.5
  • 28
    • 70449380700 scopus 로고    scopus 로고
    • Use of spatial structure analysis of hyperspectral data cubes for detection of insect-induced stress in wheat plants
    • Nansen, C., Macedo, T., Swanson, R. & Weaver, D. K. Use of spatial structure analysis of hyperspectral data cubes for detection of insect-induced stress in wheat plants. Int. J. Remote Sens. 30, 2447-2464 (2009).
    • (2009) Int. J. Remote Sens. , vol.30 , pp. 2447-2464
    • Nansen, C.1    Macedo, T.2    Swanson, R.3    Weaver, D.K.4
  • 29
    • 77954144512 scopus 로고    scopus 로고
    • Detection of the tulip breaking virus (TBV) in tulips using optical sensors
    • Polder, G. et al. Detection of the tulip breaking virus (TBV) in tulips using optical sensors. Precis. Agric. 11, 397-412 (2010).
    • (2010) Precis. Agric. , vol.11 , pp. 397-412
    • Polder, G.1
  • 30
    • 84890357438 scopus 로고    scopus 로고
    • Potential of hyperspectral imaging combined with chemometric analysis for assessing and visualising tenderness distribution in raw farmed salmon fillets
    • He, H. J., Wu, D. & Sun, D. W. Potential of hyperspectral imaging combined with chemometric analysis for assessing and visualising tenderness distribution in raw farmed salmon fillets. J. Food Eng. 126, 156-164 (2014).
    • (2014) J. Food Eng. , vol.126 , pp. 156-164
    • He, H.J.1    Wu, D.2    Sun, D.W.3
  • 31
    • 10944244741 scopus 로고    scopus 로고
    • Application of image analysis for classification of ripening bananas
    • Mendoza, F. & Aguilera, J. M. Application of image analysis for classification of ripening bananas. J. Food Sci. 69, 471-477 (2004).
    • (2004) J. Food Sci. , vol.69 , pp. 471-477
    • Mendoza, F.1    Aguilera, J.M.2
  • 33
    • 0033097007 scopus 로고    scopus 로고
    • Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices
    • Soh, L. K. & Tsatsoulis, C. Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens. 37, 780-795 (1999).
    • (1999) IEEE Trans. Geosci. Remote Sens. , vol.37 , pp. 780-795
    • Soh, L.K.1    Tsatsoulis, C.2
  • 34
    • 42749093609 scopus 로고    scopus 로고
    • A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm
    • Galvão, R. K. H. et al. A variable elimination method to improve the parsimony of MLR models using the successive projections algorithm. Chemometr. Intell. Lab. 92, 83-91 (2008).
    • (2008) Chemometr. Intell. Lab. , vol.92 , pp. 83-91
    • Galvão, R.K.H.1
  • 35
    • 84969849662 scopus 로고    scopus 로고
    • Machine-learning-Assisted materials discovery using failed experiments
    • Raccuglia, P. et al. Machine-learning-Assisted materials discovery using failed experiments. Nature 533, 73-76 (2016).
    • (2016) Nature , vol.533 , pp. 73-76
    • Raccuglia, P.1
  • 36
    • 0027538427 scopus 로고
    • Backpropagation neural networks: A tutorial
    • Wythoff, B. J. Backpropagation neural networks: A tutorial. Chemometr. Intell. Lab. 18, 115-155 (1993).
    • (1993) Chemometr. Intell. Lab. , vol.18 , pp. 115-155
    • Wythoff, B.J.1
  • 37
    • 84929522825 scopus 로고    scopus 로고
    • Extreme learning machine: Algorithm, theory and applications
    • Ding, S., Zhao, H., Zhang, Y., Xu, X. & Nie, R. Extreme learning machine: Algorithm, theory and applications. Artif. Intell. Rev. 44, 103-115 (2015).
    • (2015) Artif. Intell. Rev. , vol.44 , pp. 103-115
    • Ding, S.1    Zhao, H.2    Zhang, Y.3    Xu, X.4    Nie, R.5
  • 38
    • 0037350844 scopus 로고    scopus 로고
    • Partial least squares for discrimination
    • Barker, M. & Rayens, W. Partial least squares for discrimination. J. Chemometr. 17, 166-173 (2003).
    • (2003) J. Chemometr. , vol.17 , pp. 166-173
    • Barker, M.1    Rayens, W.2
  • 39
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman, L. Random forests. Mach. Learn. 45, 5-32 (2001).
    • (2001) Mach. Learn. , vol.45 , pp. 5-32
    • Breiman, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.