-
1
-
-
84924190291
-
Factors associated with damage accrual in patients with systemic lupus erythematosus: Results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort
-
BRUCE, I. N., O'KEEFFE, A. G., FAREWELL, V., HANLY, J. G., MANZI, S., SU, L., GLADMAN, D. D., BAE, S.-C., SANCHEZGUERRERO, J., ROMERO-DIAZ, J. et al. (2015). Factors associated with damage accrual in patients with systemic lupus erythematosus: Results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort. Ann. Rheum. Dis. 74, 1706-13.
-
(2015)
Ann. Rheum. Dis.
, vol.74
, pp. 1706-1713
-
-
Bruce, I.N.1
O'Keeffe, A.G.2
Farewell, V.3
Hanly, J.G.4
Manzi, S.5
Gladman, D.D.6
Bae, S.-C.7
Sanchezguerrero, J.8
Romero-Diaz, J.9
-
2
-
-
84957990978
-
Globally efficient nonparametric inference of average treatment effects by empirical balancing calibration weighting
-
CHAN, K. C. G.,YAM, S. C. P. & ZHANG, Z. (2016). Globally efficient nonparametric inference of average treatment effects by empirical balancing calibration weighting. J. R. Statist. Soc. B 78, 673-700.
-
(2016)
J. R. Statist. Soc. B
, vol.78
, pp. 673-700
-
-
Chan, K.C.G.1
Yam, S.C.P.2
Zhang, Z.3
-
3
-
-
60449086859
-
Dealing with limited overlap in estimation of average treatment effects
-
CRUMP, R. K., HOTZ,V. J., IMBENS, G.W.& MITNIK, O.A. (2009). Dealing with limited overlap in estimation of average treatment effects. Biometrika 96, 187-99.
-
(2009)
Biometrika
, vol.96
, pp. 187-199
-
-
Crump, R.K.1
Hotz, V.J.2
Imbens, G.W.3
Mitnik, O.A.4
-
4
-
-
82055199021
-
Covariate selection for the nonparametric estimation of an average treatment effect
-
DE LUNA, X.,WAERNBAUM, I. & RICHARDSON, T. S. (2011). Covariate selection for the nonparametric estimation of an average treatment effect. Biometrika 98, 861-75.
-
(2011)
Biometrika
, vol.98
, pp. 861-875
-
-
De Luna, X.1
Waernbaum, I.2
Richardson, T.S.3
-
5
-
-
84984992922
-
To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias
-
DING, P.&MIRATRIX, L.W. (2015).To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias. J. Causal Infer. 3, 41-57.
-
(2015)
J. Causal Infer.
, vol.3
, pp. 41-57
-
-
Ding, P.1
Miratrix, L.W.2
-
6
-
-
0028904732
-
The occurrence, nature and distribution of flares in a cohort of patients with systemic lupus erythematosus
-
EHRENSTEIN, M. R., CONROY, S. E., HEATH, J., LATCHMAN, D. S. & ISENBERG, D. A. (1995). The occurrence, nature and distribution of flares in a cohort of patients with systemic lupus erythematosus. Br. J. Rheumatol. 34, 257-60.
-
(1995)
Br. J. Rheumatol.
, vol.34
, pp. 257-260
-
-
Ehrenstein, M.R.1
Conroy, S.E.2
Heath, J.3
Latchman, D.S.4
Isenberg, D.A.5
-
7
-
-
85044208100
-
Covariate balancing propensity score for a continuous treatment: Application to the efficacy of political advertisements
-
FONG, C., HAZLETT, C. & IMAI, K. (2018). Covariate balancing propensity score for a continuous treatment: Application to the efficacy of political advertisements. Ann. Appl. Statist. 12, 156-77.
-
(2018)
Ann. Appl. Statist.
, vol.12
, pp. 156-177
-
-
Fong, C.1
Hazlett, C.2
Imai, K.3
-
8
-
-
84865176490
-
Inverse probability tilting for moment condition models with missing data
-
GRAHAM, B. S., CAMPOS DE XAVIER PINTO, C. & EGEL, D. (2012). Inverse probability tilting for moment condition models with missing data. Rev. Econ. Stud. 79, 1053-79.
-
(2012)
Rev. Econ. Stud.
, vol.79
, pp. 1053-1079
-
-
Graham, B.S.1
De Pinto, C.2
Egel, D.3
-
9
-
-
0029298180
-
Interpretation and analysis of differential exposure variability and zero-exposure categories for continuous exposures
-
GREENLAND, S. & POOLE, C. (1995). Interpretation and analysis of differential exposure variability and zero-exposure categories for continuous exposures. Epidemiology 6, 326-8.
-
(1995)
Epidemiology
, vol.6
, pp. 326-328
-
-
Greenland, S.1
Poole, C.2
-
10
-
-
84856137889
-
Entropy balancing for causal effects: Multivariate reweighting method to produce balanced samples in observational studies
-
HAINMUELLER, J. (2012). Entropy balancing for causal effects: Multivariate reweighting method to produce balanced samples in observational studies. Polit. Anal. 20, 24-46.
-
(2012)
Polit. Anal.
, vol.20
, pp. 24-46
-
-
Hainmueller, J.1
-
11
-
-
0027325557
-
The BILAG index: A reliable and validated instrument for measuring clinical disease activity in systemic lupus erythematosus
-
HAY, E., BACON, P., GORDAN, C., ISENBERG, D. A., MADDISON, P., SNAITH, M. L., SYMMONS, D. P.,VINER, N. & ZOMA, A. (1993). The BILAG index: A reliable and validated instrument for measuring clinical disease activity in systemic lupus erythematosus. Quart. J. Med. 86, 447-58.
-
(1993)
Quart. J. Med.
, vol.86
, pp. 447-458
-
-
Hay, E.1
Bacon, P.2
Gordan, C.3
Isenberg, D.A.4
Maddison, P.5
Snaith, M.L.6
Symmons, D.P.7
Viner, N.8
Zoma, A.9
-
12
-
-
84891833204
-
Covariate balancing propensity score
-
IMAI, K. & RATKOVIC, M. (2014). Covariate balancing propensity score. J. R. Statist. Soc. B 76, 243-63.
-
(2014)
J. R. Statist. Soc. B
, vol.76
, pp. 243-263
-
-
Imai, K.1
Ratkovic, M.2
-
13
-
-
84946926453
-
Robust estimation of inverse probability weights for marginal structural models
-
IMAI, K. & RATKOVIC, M. (2015). Robust estimation of inverse probability weights for marginal structural models. J. Am. Statist. Assoc. 110, 1013-23.
-
(2015)
J. Am. Statist. Assoc.
, vol.110
, pp. 1013-1023
-
-
Imai, K.1
Ratkovic, M.2
-
14
-
-
4944223958
-
Causal inference with general treatment regimes: Generalizing the propensity score
-
IMAI, K. & vAN DYK, D.A. (2004). Causal inference with general treatment regimes: Generalizing the propensity score. J. Am. Statist. Assoc. 99, 854-66.
-
(2004)
J. Am. Statist. Assoc.
, vol.99
, pp. 854-866
-
-
Imai, K.1
Van Dyk, D.A.2
-
15
-
-
0000724291
-
The role of the propensity score in estimating dose-response functions
-
IMBENS, G. W. (2000). The role of the propensity score in estimating dose-response functions. Biometrika 87, 706-10.
-
(2000)
Biometrika
, vol.87
, pp. 706-710
-
-
Imbens, G.W.1
-
16
-
-
46249131752
-
Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data (with Discussion)
-
KANG, J. D. & SCHAFER, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data (with Discussion). Statist. Sci. 22, 523-39.
-
(2007)
Statist. Sci.
, vol.22
, pp. 523-539
-
-
Kang, J.D.1
Schafer, J.L.2
-
17
-
-
74749097452
-
Improving propensity score weighting using machine learning
-
LEE, B. K., LESSLER, J. & STUART, E.A. (2010). Improving propensity score weighting using machine learning. Statist. Med. 29, 337-46.
-
(2010)
Statist. Med.
, vol.29
, pp. 337-346
-
-
Lee, B.K.1
Lessler, J.2
Stuart, E.A.3
-
18
-
-
27744462592
-
Propensity score matching with time-dependent covariates
-
LU, B. (2005). Propensity score matching with time-dependent covariates. Biometrics 61, 721-8.
-
(2005)
Biometrics
, vol.61
, pp. 721-728
-
-
-
19
-
-
84880306368
-
A tutorial on propensity score estimation for multiple treatment using generalized boosted models
-
MCCAFFREY, D. F., GRIFFIN, B. A., ALMIRALL, D., SLAUGHTER, M. E., RAMCHARD, R. & BURGETTE, L. F. (2013). A tutorial on propensity score estimation for multiple treatment using generalized boosted models. Statist. Med. 32, 3388-414.
-
(2013)
Statist. Med.
, vol.32
, pp. 3388-3414
-
-
McCaffrey, D.F.1
Griffin, B.A.2
Almirall, D.3
Slaughter, M.E.4
Ramchard, R.5
Burgette, L.F.6
-
20
-
-
84859408004
-
Estimation of dose-response functions for longitudinal data using the generalised propensity score
-
MOODIE, E. M. & STEPHENS, D. A. (2010). Estimation of dose-response functions for longitudinal data using the generalised propensity score. Statist. Meth. Med. Res. 21, 149-66.
-
(2010)
Statist. Meth. Med. Res.
, vol.21
, pp. 149-166
-
-
Moodie, E.M.1
Stephens, D.A.2
-
21
-
-
84894174160
-
Constructing inverse probability weights for continuous exposures: A comparison of methods
-
NAIMI,A. I.,MOODIE, E. E.,AUGER,N.&KAUFMAN, J. S. (2014). Constructing inverse probability weights for continuous exposures: A comparison of methods. Epidemiology 25, 292-9.
-
(2014)
Epidemiology
, vol.25
, pp. 292-299
-
-
Naimi, A.I.1
Moodie, E.E.2
Auger, N.3
Kaufman, J.S.4
-
22
-
-
1542678316
-
A two-part random effects model for semicontinuous longitudinal data
-
OLSEN, M. K. & SCHAFER, J. L. (2001). A two-part random effects model for semicontinuous longitudinal data. J. Am. Statist. Assoc. 96, 730-45.
-
(2001)
J. Am. Statist. Assoc.
, vol.96
, pp. 730-745
-
-
Olsen, M.K.1
Schafer, J.L.2
-
23
-
-
77956888769
-
Causal diagrams for empirical research
-
PEARL, J. (1995). Causal diagrams for empirical research. Biometrika 82, 669-88.
-
(1995)
Biometrika
, vol.82
, pp. 669-688
-
-
Pearl, J.1
-
24
-
-
84862907581
-
Diagnosing and responding to violations in the positivity assumption
-
PETERSON, M. L., PORTER, K. E., GRUBER, S. G.,WANG, Y. &VAN DER LAAN, M. J. (2010). Diagnosing and responding to violations in the positivity assumption. Statist. Meth. Med. Res. 21, 31-54.
-
(2010)
Statist. Meth. Med. Res.
, vol.21
, pp. 31-54
-
-
Peterson, M.L.1
Porter, K.E.2
Gruber, S.G.3
Wang, Y.4
Van Der Laan, M.J.5
-
25
-
-
85044837648
-
-
R DEVELOPMENT CORE TEAM, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
-
R DEVELOPMENT CORE TEAM (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.
-
(2018)
R: A Language and Environment for Statistical Computing
-
-
-
26
-
-
46249085099
-
Comment: Performance of doubly-robust estimators when "inverse probability" weights are highly variable
-
ROBINS, J., SUED, M., LEI-GOMEZ, Q. & ROTNITZKY, A. (2007). Comment: Performance of doubly-robust estimators when "inverse probability" weights are highly variable. Statist. Sci. 22, 544-59.
-
(2007)
Statist. Sci.
, vol.22
, pp. 544-559
-
-
Robins, J.1
Sued, M.2
Lei-Gomez, Q.3
Rotnitzky, A.4
-
27
-
-
0003135327
-
Marginal structural models versus structural nested models as tools for causal inference
-
M. E. Halloran & D. Berry, eds. New York: Springer
-
ROBINS, J. M. (2000). Marginal structural models versus structural nested models as tools for causal inference. In Statistical Models in Epidemiology, the Environment and Clinical Trials, M. E. Halloran & D. Berry, eds. New York: Springer, pp. 95-133.
-
(2000)
Statistical Models in Epidemiology, the Environment and Clinical Trials
, pp. 95-133
-
-
Robins, J.M.1
-
28
-
-
0033847784
-
Marginal structural models and causal inference in epidemiology
-
ROBINS, J. M.,HERNÁN,M.A.&BRUMBACK,B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11, 550-60.
-
(2000)
Epidemiology
, vol.11
, pp. 550-560
-
-
Robins, J.M.1
Hernán, M.A.2
Brumback, B.3
-
29
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
ROSENBAUM, P. R. & RUBIN, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55.
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
30
-
-
79961222324
-
On the validity of covariate adjustment for estimating causal effects
-
P. GrünwaldP. Spirtes, eds. AUAI Press
-
SHPITSER, I.,VANDERWEELE,T. J. & ROBINS, J.M. (2010). On the validity of covariate adjustment for estimating causal effects. In Proceedings of the 26th Conference on Uncertainty and Artificial Intelligence, P. GrünwaldP. Spirtes, eds. AUAI Press, pp. 527-36.
-
(2010)
Proceedings of the 26th Conference on Uncertainty and Artificial Intelligence
, pp. 527-536
-
-
Shpitser, I.1
Vanderweele, T.J.2
Robins, J.M.3
-
32
-
-
79952586276
-
The use of propensity scores to assess the generalizability of results from randomized trials
-
STUART, E. A., COLE, S. R., BRADSHAW, C. P. & LEAF, P. J. (2011). The use of propensity scores to assess the generalizability of results from randomized trials. J. R. Statist. Soc. A 174, 369-86.
-
(2011)
J. R. Statist. Soc. A
, vol.174
, pp. 369-386
-
-
Stuart, E.A.1
Cole, S.R.2
Bradshaw, C.P.3
Leaf, P.J.4
-
33
-
-
80054726997
-
A new criterion for confounder selection
-
VANDERWEELE, T. J. & SHPITSER, I. (2011). A new criterion for confounder selection. Biometrics 67, 1406-13.
-
(2011)
Biometrics
, vol.67
, pp. 1406-1413
-
-
Vanderweele, T.J.1
Shpitser, I.2
-
34
-
-
79953903665
-
On model selection and model misspecification in causal inference
-
VANSTEELANDT, S., BEKAERT, M. & CLAESKENS, G. (2012). On model selection and model misspecification in causal inference. Statist. Meth. Med. Res. 21, 7-30.
-
(2012)
Statist. Meth. Med. Res.
, vol.21
, pp. 7-30
-
-
Vansteelandt, S.1
Bekaert, M.2
Claeskens, G.3
-
35
-
-
84958700646
-
Causal inference with a quantitative exposure
-
ZHANG, Z., ZHOU, J., CAO,W. & ZHANG, J. (2016). Causal inference with a quantitative exposure. Statist. Meth. Med. Res. 25, 315-35.
-
(2016)
Statist. Meth. Med. Res.
, vol.25
, pp. 315-335
-
-
Zhang, Z.1
Zhou, J.2
Cao, W.3
Zhang, J.4
-
36
-
-
84938746620
-
A boosting algorithm for estimating generalized propensity scores with continuous treatments
-
ZHU,Y., COFFMAN, D. L. & GHOSH, D. (2015).A boosting algorithm for estimating generalized propensity scores with continuous treatments. J. Causal Infer. 3, 25-40.
-
(2015)
J. Causal Infer.
, vol.3
, pp. 25-40
-
-
Zhu, Y.1
Coffman, D.L.2
Ghosh, D.3
-
37
-
-
84946945195
-
Stable weights that balance covariates for estimation with incomplete outcome data
-
ZUBIZARRETA, J. R. (2015). Stable weights that balance covariates for estimation with incomplete outcome data. J. Am. Statist. Assoc. 110, 910-22.
-
(2015)
J. Am. Statist. Assoc.
, vol.110
, pp. 910-922
-
-
Zubizarreta, J.R.1
|