메뉴 건너뛰기




Volumn 105, Issue 3, 2018, Pages 709-722

Covariate association eliminating weights: A unified weighting framework for causal effect estimation

Author keywords

Causal inference; Confounding; Continuous treatment; Covariate balance; Inverse probability weighting; Propensity function

Indexed keywords


EID: 85054957049     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asy015     Document Type: Article
Times cited : (55)

References (37)
  • 1
    • 84924190291 scopus 로고    scopus 로고
    • Factors associated with damage accrual in patients with systemic lupus erythematosus: Results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort
    • BRUCE, I. N., O'KEEFFE, A. G., FAREWELL, V., HANLY, J. G., MANZI, S., SU, L., GLADMAN, D. D., BAE, S.-C., SANCHEZGUERRERO, J., ROMERO-DIAZ, J. et al. (2015). Factors associated with damage accrual in patients with systemic lupus erythematosus: Results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort. Ann. Rheum. Dis. 74, 1706-13.
    • (2015) Ann. Rheum. Dis. , vol.74 , pp. 1706-1713
    • Bruce, I.N.1    O'Keeffe, A.G.2    Farewell, V.3    Hanly, J.G.4    Manzi, S.5    Gladman, D.D.6    Bae, S.-C.7    Sanchezguerrero, J.8    Romero-Diaz, J.9
  • 2
    • 84957990978 scopus 로고    scopus 로고
    • Globally efficient nonparametric inference of average treatment effects by empirical balancing calibration weighting
    • CHAN, K. C. G.,YAM, S. C. P. & ZHANG, Z. (2016). Globally efficient nonparametric inference of average treatment effects by empirical balancing calibration weighting. J. R. Statist. Soc. B 78, 673-700.
    • (2016) J. R. Statist. Soc. B , vol.78 , pp. 673-700
    • Chan, K.C.G.1    Yam, S.C.P.2    Zhang, Z.3
  • 3
    • 60449086859 scopus 로고    scopus 로고
    • Dealing with limited overlap in estimation of average treatment effects
    • CRUMP, R. K., HOTZ,V. J., IMBENS, G.W.& MITNIK, O.A. (2009). Dealing with limited overlap in estimation of average treatment effects. Biometrika 96, 187-99.
    • (2009) Biometrika , vol.96 , pp. 187-199
    • Crump, R.K.1    Hotz, V.J.2    Imbens, G.W.3    Mitnik, O.A.4
  • 4
    • 82055199021 scopus 로고    scopus 로고
    • Covariate selection for the nonparametric estimation of an average treatment effect
    • DE LUNA, X.,WAERNBAUM, I. & RICHARDSON, T. S. (2011). Covariate selection for the nonparametric estimation of an average treatment effect. Biometrika 98, 861-75.
    • (2011) Biometrika , vol.98 , pp. 861-875
    • De Luna, X.1    Waernbaum, I.2    Richardson, T.S.3
  • 5
    • 84984992922 scopus 로고    scopus 로고
    • To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias
    • DING, P.&MIRATRIX, L.W. (2015).To adjust or not to adjust? Sensitivity analysis of M-bias and butterfly-bias. J. Causal Infer. 3, 41-57.
    • (2015) J. Causal Infer. , vol.3 , pp. 41-57
    • Ding, P.1    Miratrix, L.W.2
  • 6
    • 0028904732 scopus 로고
    • The occurrence, nature and distribution of flares in a cohort of patients with systemic lupus erythematosus
    • EHRENSTEIN, M. R., CONROY, S. E., HEATH, J., LATCHMAN, D. S. & ISENBERG, D. A. (1995). The occurrence, nature and distribution of flares in a cohort of patients with systemic lupus erythematosus. Br. J. Rheumatol. 34, 257-60.
    • (1995) Br. J. Rheumatol. , vol.34 , pp. 257-260
    • Ehrenstein, M.R.1    Conroy, S.E.2    Heath, J.3    Latchman, D.S.4    Isenberg, D.A.5
  • 7
    • 85044208100 scopus 로고    scopus 로고
    • Covariate balancing propensity score for a continuous treatment: Application to the efficacy of political advertisements
    • FONG, C., HAZLETT, C. & IMAI, K. (2018). Covariate balancing propensity score for a continuous treatment: Application to the efficacy of political advertisements. Ann. Appl. Statist. 12, 156-77.
    • (2018) Ann. Appl. Statist. , vol.12 , pp. 156-177
    • Fong, C.1    Hazlett, C.2    Imai, K.3
  • 8
    • 84865176490 scopus 로고    scopus 로고
    • Inverse probability tilting for moment condition models with missing data
    • GRAHAM, B. S., CAMPOS DE XAVIER PINTO, C. & EGEL, D. (2012). Inverse probability tilting for moment condition models with missing data. Rev. Econ. Stud. 79, 1053-79.
    • (2012) Rev. Econ. Stud. , vol.79 , pp. 1053-1079
    • Graham, B.S.1    De Pinto, C.2    Egel, D.3
  • 9
    • 0029298180 scopus 로고
    • Interpretation and analysis of differential exposure variability and zero-exposure categories for continuous exposures
    • GREENLAND, S. & POOLE, C. (1995). Interpretation and analysis of differential exposure variability and zero-exposure categories for continuous exposures. Epidemiology 6, 326-8.
    • (1995) Epidemiology , vol.6 , pp. 326-328
    • Greenland, S.1    Poole, C.2
  • 10
    • 84856137889 scopus 로고    scopus 로고
    • Entropy balancing for causal effects: Multivariate reweighting method to produce balanced samples in observational studies
    • HAINMUELLER, J. (2012). Entropy balancing for causal effects: Multivariate reweighting method to produce balanced samples in observational studies. Polit. Anal. 20, 24-46.
    • (2012) Polit. Anal. , vol.20 , pp. 24-46
    • Hainmueller, J.1
  • 11
    • 0027325557 scopus 로고
    • The BILAG index: A reliable and validated instrument for measuring clinical disease activity in systemic lupus erythematosus
    • HAY, E., BACON, P., GORDAN, C., ISENBERG, D. A., MADDISON, P., SNAITH, M. L., SYMMONS, D. P.,VINER, N. & ZOMA, A. (1993). The BILAG index: A reliable and validated instrument for measuring clinical disease activity in systemic lupus erythematosus. Quart. J. Med. 86, 447-58.
    • (1993) Quart. J. Med. , vol.86 , pp. 447-458
    • Hay, E.1    Bacon, P.2    Gordan, C.3    Isenberg, D.A.4    Maddison, P.5    Snaith, M.L.6    Symmons, D.P.7    Viner, N.8    Zoma, A.9
  • 12
    • 84891833204 scopus 로고    scopus 로고
    • Covariate balancing propensity score
    • IMAI, K. & RATKOVIC, M. (2014). Covariate balancing propensity score. J. R. Statist. Soc. B 76, 243-63.
    • (2014) J. R. Statist. Soc. B , vol.76 , pp. 243-263
    • Imai, K.1    Ratkovic, M.2
  • 13
    • 84946926453 scopus 로고    scopus 로고
    • Robust estimation of inverse probability weights for marginal structural models
    • IMAI, K. & RATKOVIC, M. (2015). Robust estimation of inverse probability weights for marginal structural models. J. Am. Statist. Assoc. 110, 1013-23.
    • (2015) J. Am. Statist. Assoc. , vol.110 , pp. 1013-1023
    • Imai, K.1    Ratkovic, M.2
  • 14
    • 4944223958 scopus 로고    scopus 로고
    • Causal inference with general treatment regimes: Generalizing the propensity score
    • IMAI, K. & vAN DYK, D.A. (2004). Causal inference with general treatment regimes: Generalizing the propensity score. J. Am. Statist. Assoc. 99, 854-66.
    • (2004) J. Am. Statist. Assoc. , vol.99 , pp. 854-866
    • Imai, K.1    Van Dyk, D.A.2
  • 15
    • 0000724291 scopus 로고    scopus 로고
    • The role of the propensity score in estimating dose-response functions
    • IMBENS, G. W. (2000). The role of the propensity score in estimating dose-response functions. Biometrika 87, 706-10.
    • (2000) Biometrika , vol.87 , pp. 706-710
    • Imbens, G.W.1
  • 16
    • 46249131752 scopus 로고    scopus 로고
    • Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data (with Discussion)
    • KANG, J. D. & SCHAFER, J. L. (2007). Demystifying double robustness: A comparison of alternative strategies for estimating a population mean from incomplete data (with Discussion). Statist. Sci. 22, 523-39.
    • (2007) Statist. Sci. , vol.22 , pp. 523-539
    • Kang, J.D.1    Schafer, J.L.2
  • 17
    • 74749097452 scopus 로고    scopus 로고
    • Improving propensity score weighting using machine learning
    • LEE, B. K., LESSLER, J. & STUART, E.A. (2010). Improving propensity score weighting using machine learning. Statist. Med. 29, 337-46.
    • (2010) Statist. Med. , vol.29 , pp. 337-346
    • Lee, B.K.1    Lessler, J.2    Stuart, E.A.3
  • 18
    • 27744462592 scopus 로고    scopus 로고
    • Propensity score matching with time-dependent covariates
    • LU, B. (2005). Propensity score matching with time-dependent covariates. Biometrics 61, 721-8.
    • (2005) Biometrics , vol.61 , pp. 721-728
  • 19
    • 84880306368 scopus 로고    scopus 로고
    • A tutorial on propensity score estimation for multiple treatment using generalized boosted models
    • MCCAFFREY, D. F., GRIFFIN, B. A., ALMIRALL, D., SLAUGHTER, M. E., RAMCHARD, R. & BURGETTE, L. F. (2013). A tutorial on propensity score estimation for multiple treatment using generalized boosted models. Statist. Med. 32, 3388-414.
    • (2013) Statist. Med. , vol.32 , pp. 3388-3414
    • McCaffrey, D.F.1    Griffin, B.A.2    Almirall, D.3    Slaughter, M.E.4    Ramchard, R.5    Burgette, L.F.6
  • 20
    • 84859408004 scopus 로고    scopus 로고
    • Estimation of dose-response functions for longitudinal data using the generalised propensity score
    • MOODIE, E. M. & STEPHENS, D. A. (2010). Estimation of dose-response functions for longitudinal data using the generalised propensity score. Statist. Meth. Med. Res. 21, 149-66.
    • (2010) Statist. Meth. Med. Res. , vol.21 , pp. 149-166
    • Moodie, E.M.1    Stephens, D.A.2
  • 21
    • 84894174160 scopus 로고    scopus 로고
    • Constructing inverse probability weights for continuous exposures: A comparison of methods
    • NAIMI,A. I.,MOODIE, E. E.,AUGER,N.&KAUFMAN, J. S. (2014). Constructing inverse probability weights for continuous exposures: A comparison of methods. Epidemiology 25, 292-9.
    • (2014) Epidemiology , vol.25 , pp. 292-299
    • Naimi, A.I.1    Moodie, E.E.2    Auger, N.3    Kaufman, J.S.4
  • 22
    • 1542678316 scopus 로고    scopus 로고
    • A two-part random effects model for semicontinuous longitudinal data
    • OLSEN, M. K. & SCHAFER, J. L. (2001). A two-part random effects model for semicontinuous longitudinal data. J. Am. Statist. Assoc. 96, 730-45.
    • (2001) J. Am. Statist. Assoc. , vol.96 , pp. 730-745
    • Olsen, M.K.1    Schafer, J.L.2
  • 23
    • 77956888769 scopus 로고
    • Causal diagrams for empirical research
    • PEARL, J. (1995). Causal diagrams for empirical research. Biometrika 82, 669-88.
    • (1995) Biometrika , vol.82 , pp. 669-688
    • Pearl, J.1
  • 25
    • 85044837648 scopus 로고    scopus 로고
    • R DEVELOPMENT CORE TEAM, R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0
    • R DEVELOPMENT CORE TEAM (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.
    • (2018) R: A Language and Environment for Statistical Computing
  • 26
    • 46249085099 scopus 로고    scopus 로고
    • Comment: Performance of doubly-robust estimators when "inverse probability" weights are highly variable
    • ROBINS, J., SUED, M., LEI-GOMEZ, Q. & ROTNITZKY, A. (2007). Comment: Performance of doubly-robust estimators when "inverse probability" weights are highly variable. Statist. Sci. 22, 544-59.
    • (2007) Statist. Sci. , vol.22 , pp. 544-559
    • Robins, J.1    Sued, M.2    Lei-Gomez, Q.3    Rotnitzky, A.4
  • 27
    • 0003135327 scopus 로고    scopus 로고
    • Marginal structural models versus structural nested models as tools for causal inference
    • M. E. Halloran & D. Berry, eds. New York: Springer
    • ROBINS, J. M. (2000). Marginal structural models versus structural nested models as tools for causal inference. In Statistical Models in Epidemiology, the Environment and Clinical Trials, M. E. Halloran & D. Berry, eds. New York: Springer, pp. 95-133.
    • (2000) Statistical Models in Epidemiology, the Environment and Clinical Trials , pp. 95-133
    • Robins, J.M.1
  • 28
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • ROBINS, J. M.,HERNÁN,M.A.&BRUMBACK,B. (2000). Marginal structural models and causal inference in epidemiology. Epidemiology 11, 550-60.
    • (2000) Epidemiology , vol.11 , pp. 550-560
    • Robins, J.M.1    Hernán, M.A.2    Brumback, B.3
  • 29
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • ROSENBAUM, P. R. & RUBIN, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70, 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 32
    • 79952586276 scopus 로고    scopus 로고
    • The use of propensity scores to assess the generalizability of results from randomized trials
    • STUART, E. A., COLE, S. R., BRADSHAW, C. P. & LEAF, P. J. (2011). The use of propensity scores to assess the generalizability of results from randomized trials. J. R. Statist. Soc. A 174, 369-86.
    • (2011) J. R. Statist. Soc. A , vol.174 , pp. 369-386
    • Stuart, E.A.1    Cole, S.R.2    Bradshaw, C.P.3    Leaf, P.J.4
  • 33
    • 80054726997 scopus 로고    scopus 로고
    • A new criterion for confounder selection
    • VANDERWEELE, T. J. & SHPITSER, I. (2011). A new criterion for confounder selection. Biometrics 67, 1406-13.
    • (2011) Biometrics , vol.67 , pp. 1406-1413
    • Vanderweele, T.J.1    Shpitser, I.2
  • 34
    • 79953903665 scopus 로고    scopus 로고
    • On model selection and model misspecification in causal inference
    • VANSTEELANDT, S., BEKAERT, M. & CLAESKENS, G. (2012). On model selection and model misspecification in causal inference. Statist. Meth. Med. Res. 21, 7-30.
    • (2012) Statist. Meth. Med. Res. , vol.21 , pp. 7-30
    • Vansteelandt, S.1    Bekaert, M.2    Claeskens, G.3
  • 36
    • 84938746620 scopus 로고    scopus 로고
    • A boosting algorithm for estimating generalized propensity scores with continuous treatments
    • ZHU,Y., COFFMAN, D. L. & GHOSH, D. (2015).A boosting algorithm for estimating generalized propensity scores with continuous treatments. J. Causal Infer. 3, 25-40.
    • (2015) J. Causal Infer. , vol.3 , pp. 25-40
    • Zhu, Y.1    Coffman, D.L.2    Ghosh, D.3
  • 37
    • 84946945195 scopus 로고    scopus 로고
    • Stable weights that balance covariates for estimation with incomplete outcome data
    • ZUBIZARRETA, J. R. (2015). Stable weights that balance covariates for estimation with incomplete outcome data. J. Am. Statist. Assoc. 110, 910-22.
    • (2015) J. Am. Statist. Assoc. , vol.110 , pp. 910-922
    • Zubizarreta, J.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.