메뉴 건너뛰기




Volumn 21, Issue 2, 2012, Pages 149-166

Estimation of dose-response functions for longitudinal data using the generalised propensity score

Author keywords

causal inference; confounding; continuous dose response; generalized propensity score; longitudinal data; monitored occlusion treatment of amblyopia study; noncompliance

Indexed keywords

AMBLYOPIA; ARTICLE; BLOOD PATCH; CHILDHOOD DISEASE; DOSE RESPONSE; HUMAN; LONGITUDINAL STUDY; METHODOLOGY; PROPENSITY SCORE;

EID: 84859408004     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280209340213     Document Type: Article
Times cited : (26)

References (29)
  • 1
    • 2942594272 scopus 로고    scopus 로고
    • Causal reasoning from longitudinal data
    • Arjas E and Parner J. Causal reasoning from longitudinal data. Scandinavian Journal of Statistics 2004; 31: 171-87. (Pubitemid 38750722)
    • (2004) Scandinavian Journal of Statistics , vol.31 , Issue.2 , pp. 171-187
    • Arjas, E.1    Parner, J.2
  • 2
    • 0000724291 scopus 로고    scopus 로고
    • The role of the propensity score in estimating dose-response functions
    • Imbens GW. The role of the propensity score in estimating dose-response functions. Biometrika 2000; 87: 706-10.
    • (2000) Biometrika , vol.87 , pp. 706-710
    • Imbens, G.W.1
  • 5
    • 33846253571 scopus 로고    scopus 로고
    • The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials
    • DOI 10.1002/sim.2739
    • Rubin DB. The design versus the analysis of observational studies for causal effects: Parallels with the design of randomised trials. Statistics in Medicine 2007; 26: 20-36. (Pubitemid 46099415)
    • (2007) Statistics in Medicine , vol.26 , Issue.1 , pp. 20-36
    • Rubin, D.B.1
  • 6
    • 0442325061 scopus 로고    scopus 로고
    • On the effect of treatment among would-be treatment compliers: An analysis of the multiple risk factor intervention trial
    • Follman DA. On the effect of treatment among would-be treatment compliers: an analysis of the multiple risk factor intervention trial. Journal of the American Statistical Association 2000; 95: 1101-9.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 1101-1109
    • Follman, D.A.1
  • 7
    • 0000741850 scopus 로고    scopus 로고
    • Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes
    • Frangakis CE and Rubin DB. Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-compliance and subsequent missing outcomes. Biometrika 1999; 86: 365-79. (Pubitemid 129767156)
    • (1999) Biometrika , vol.86 , Issue.2 , pp. 365-379
    • Frangakis, C.E.1    Rubin, D.B.2
  • 8
    • 0036188782 scopus 로고    scopus 로고
    • Principal stratification in causal inference
    • Frangakis CE and Rubin DB. Principal stratification in causal inference. Biometrics 2002; 58: 21-9. (Pubitemid 34194484)
    • (2002) Biometrics , vol.58 , Issue.1 , pp. 21-29
    • Frangakis, C.E.1    Rubin, D.B.2
  • 9
    • 0141974141 scopus 로고    scopus 로고
    • The compliance score as a regressor in randomized trials
    • DOI 10.1093/biostatistics/4.3.327
    • Joffe MM, Ten Have TR and Brensinger C. The compliance score as a regressor in randomised trials. Biostatistics 2003; 4: 327-40. (Pubitemid 36810086)
    • (2003) BIOSTATISTICS -OXFORD- , vol.4 , Issue.3 , pp. 327-340
    • Joffe, M.M.1    Have, T.R.T.2    Brensinger, C.3
  • 10
    • 33750723791 scopus 로고    scopus 로고
    • G-computation estimation of nonparametric causal effects on time-dependent mean outcomes in longitudinal studies
    • Neugebauer R and van der Laan M. G-computation estimation of nonparametric causal effects on time-dependent mean outcomes in longitudinal studies. Computational Statistics & Data Analysis 2006; 51: 1676-97.
    • (2006) Computational Statistics & Data Analysis , vol.51 , pp. 1676-1697
    • Neugebauer, R.1    Van Der Laan, M.2
  • 11
    • 0033847784 scopus 로고    scopus 로고
    • Marginal structural models and causal inference in epidemiology
    • DOI 10.1097/00001648-200009000-00011
    • Robins JM, Hernán MA and Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000; 11: 550-60. (Pubitemid 30660034)
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 550-560
    • Robins, J.M.1    Hernan, M.A.2    Brumback, B.3
  • 12
    • 0033839024 scopus 로고    scopus 로고
    • Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men
    • DOI 10.1097/00001648-200009000-00012
    • Hernán MA, Brumback B and Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11: 561-70. (Pubitemid 30660035)
    • (2000) Epidemiology , vol.11 , Issue.5 , pp. 561-570
    • Hernan, M.A.1    Brumback, B.2    Robins, J.M.3
  • 14
    • 84859374334 scopus 로고    scopus 로고
    • Analyzing sequentially randomised trials based on causal effect models for realistic individualised treatment rules
    • Bembom O and van der Laan MJ. Analyzing sequentially randomised trials based on causal effect models for realistic individualised treatment rules. COBRA (Collection of Biostatistics Research Archive); 2007.
    • (2007) COBRA (Collection of Biostatistics Research Archive)
    • Bembom, O.1    Van Der Laan, M.J.2
  • 15
    • 33847633000 scopus 로고    scopus 로고
    • Causal effect models for realistic individualized treatment and intention to treat rules
    • Article 6
    • van der Laan MJ and Petersen ML. Causal effect models for realistic individualized treatment and intention to treat rules. International Journal of Biostatistics 2007; 3(1), Article 6.
    • (2007) International Journal of Biostatistics , vol.3 , Issue.1
    • Van Der Laan, M.J.1    Petersen, M.L.2
  • 16
    • 53849122359 scopus 로고    scopus 로고
    • Estimation and extrapolation of optimal treatment and testing strategies
    • Robins J, Orellana L and Rotnitzky A. Estimation and extrapolation of optimal treatment and testing strategies. Statistics in Medicine 2008; 27(23): 4678-721.
    • (2008) Statistics in Medicine , vol.27 , Issue.23 , pp. 4678-4721
    • Robins, J.1    Orellana, L.2    Rotnitzky, A.3
  • 17
    • 4944223958 scopus 로고    scopus 로고
    • Causal inference with general treatment regimes: Generalizing the propensity score
    • DOI 10.1198/016214504000001187
    • Imai K and Van Dyk DA. Causal inference with general treatment regimes: Generalizing the propensity score. Journal of the American Statistical Association 2004; 99(467): 854-66. (Pubitemid 39332867)
    • (2004) Journal of the American Statistical Association , vol.99 , Issue.467 , pp. 854-866
    • Imai, K.1    Van Dyk, D.A.2
  • 18
    • 0001815275 scopus 로고    scopus 로고
    • Causal inference from complex longitudinal data
    • Berkane M (ed.) New York: Springer-Verlag
    • Robins JM. Causal inference from complex longitudinal data. In: Berkane M (ed.) Latent variable modeling and applications to causality. New York: Springer-Verlag, 1997, pp.69-117.
    • (1997) Latent Variable Modeling and Applications to Causality , pp. 69-117
    • Robins, J.M.1
  • 19
    • 0002531157 scopus 로고
    • Bayesian inference for causal effects: The role of randomization
    • Rubin DB. Bayesian inference for causal effects: The role of randomization. Annals of Statistics 1978; 6: 34-58.
    • (1978) Annals of Statistics , vol.6 , pp. 34-58
    • Rubin, D.B.1
  • 20
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum PR and Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70: 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 21
    • 4344631105 scopus 로고    scopus 로고
    • Treatment dose-response in amblyopia therapy: The Monitored Occlusion Treatment of Amblyopia Study (MOTAS)
    • DOI 10.1167/iovs.04-0250
    • Stewart CE, Moseley MJ, Stephens DA and Fielder AR. Treatment dose-response in amblyopia therapy: The Monitored Occlusion Treatment of Amblyopia Study (MOTAS}). Investigations in Ophthalmology and Visual Science 2004; 45: 3048-54. (Pubitemid 39121835)
    • (2004) Investigative Ophthalmology and Visual Science , vol.45 , Issue.9 , pp. 3048-3054
    • Stewart, C.E.1    Moseley, M.J.2    Stephens, D.A.3    Fielder, A.R.4
  • 22
    • 0036315278 scopus 로고    scopus 로고
    • Design of the Monitored Occlusion Treatment of Amblyopia Study (MOTAS)
    • DOI 10.1136/bjo.86.8.915
    • Stewart CE, Fielder AR, Stephens DA and Moseley MJ. Design of the Monitored Occlusion Treatment of Amblyopia Study (MOTAS}). British Journal of Ophthalmology 2002; 86: 915-9. (Pubitemid 34827974)
    • (2002) British Journal of Ophthalmology , vol.86 , Issue.8 , pp. 915-919
    • Stewart, C.E.1    Fielder, A.R.2    Stephens, D.A.3    Moseley, M.J.4
  • 24
    • 33846842327 scopus 로고    scopus 로고
    • A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
    • DOI 10.1002/sim.2580
    • Austin PC, Grootendorst P and Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study. Statistics in Medicine 2007; 26: 734-53. (Pubitemid 46206593)
    • (2007) Statistics in Medicine , vol.26 , Issue.4 , pp. 734-753
    • Austin, P.C.1    Grootendorst, P.2    Anderson, G.M.3
  • 25
    • 61749090370 scopus 로고    scopus 로고
    • A practical illustration of the importance of realistic individualised treatment rules in causal inference
    • Bembom O and van der LaanM. A practical illustration of the importance of realistic individualised treatment rules in causal inference. Electronic Journal of Statistics 2007; 1: 574-96.
    • (2007) Electronic Journal of Statistics , vol.1 , pp. 574-596
    • Bembom, O.1    Van Der Laan, M.2
  • 28
    • 40549104115 scopus 로고    scopus 로고
    • Misunderstandings between experimentalists and observationalists about causal inference
    • Imai K, King G and Stuart EA. Misunderstandings between experimentalists and observationalists about causal inference. Journal of the Royal Statistical Society, Series A 2008; 171: 481-502.
    • (2008) Journal of the Royal Statistical Society, Series A , vol.171 , pp. 481-502
    • Imai, K.1    King, G.2    Stuart, E.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.