-
1
-
-
2942594272
-
Causal reasoning from longitudinal data
-
Arjas E and Parner J. Causal reasoning from longitudinal data. Scandinavian Journal of Statistics 2004; 31: 171-87. (Pubitemid 38750722)
-
(2004)
Scandinavian Journal of Statistics
, vol.31
, Issue.2
, pp. 171-187
-
-
Arjas, E.1
Parner, J.2
-
2
-
-
0000724291
-
The role of the propensity score in estimating dose-response functions
-
Imbens GW. The role of the propensity score in estimating dose-response functions. Biometrika 2000; 87: 706-10.
-
(2000)
Biometrika
, vol.87
, pp. 706-710
-
-
Imbens, G.W.1
-
5
-
-
33846253571
-
The design versus the analysis of observational studies for causal effects: Parallels with the design of randomized trials
-
DOI 10.1002/sim.2739
-
Rubin DB. The design versus the analysis of observational studies for causal effects: Parallels with the design of randomised trials. Statistics in Medicine 2007; 26: 20-36. (Pubitemid 46099415)
-
(2007)
Statistics in Medicine
, vol.26
, Issue.1
, pp. 20-36
-
-
Rubin, D.B.1
-
6
-
-
0442325061
-
On the effect of treatment among would-be treatment compliers: An analysis of the multiple risk factor intervention trial
-
Follman DA. On the effect of treatment among would-be treatment compliers: an analysis of the multiple risk factor intervention trial. Journal of the American Statistical Association 2000; 95: 1101-9.
-
(2000)
Journal of the American Statistical Association
, vol.95
, pp. 1101-1109
-
-
Follman, D.A.1
-
7
-
-
0000741850
-
Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-noncompliance and subsequent missing outcomes
-
Frangakis CE and Rubin DB. Addressing complications of intention-to-treat analysis in the combined presence of all-or-none treatment-compliance and subsequent missing outcomes. Biometrika 1999; 86: 365-79. (Pubitemid 129767156)
-
(1999)
Biometrika
, vol.86
, Issue.2
, pp. 365-379
-
-
Frangakis, C.E.1
Rubin, D.B.2
-
8
-
-
0036188782
-
Principal stratification in causal inference
-
Frangakis CE and Rubin DB. Principal stratification in causal inference. Biometrics 2002; 58: 21-9. (Pubitemid 34194484)
-
(2002)
Biometrics
, vol.58
, Issue.1
, pp. 21-29
-
-
Frangakis, C.E.1
Rubin, D.B.2
-
9
-
-
0141974141
-
The compliance score as a regressor in randomized trials
-
DOI 10.1093/biostatistics/4.3.327
-
Joffe MM, Ten Have TR and Brensinger C. The compliance score as a regressor in randomised trials. Biostatistics 2003; 4: 327-40. (Pubitemid 36810086)
-
(2003)
BIOSTATISTICS -OXFORD-
, vol.4
, Issue.3
, pp. 327-340
-
-
Joffe, M.M.1
Have, T.R.T.2
Brensinger, C.3
-
10
-
-
33750723791
-
G-computation estimation of nonparametric causal effects on time-dependent mean outcomes in longitudinal studies
-
Neugebauer R and van der Laan M. G-computation estimation of nonparametric causal effects on time-dependent mean outcomes in longitudinal studies. Computational Statistics & Data Analysis 2006; 51: 1676-97.
-
(2006)
Computational Statistics & Data Analysis
, vol.51
, pp. 1676-1697
-
-
Neugebauer, R.1
Van Der Laan, M.2
-
11
-
-
0033847784
-
Marginal structural models and causal inference in epidemiology
-
DOI 10.1097/00001648-200009000-00011
-
Robins JM, Hernán MA and Brumback B. Marginal structural models and causal inference in epidemiology. Epidemiology 2000; 11: 550-60. (Pubitemid 30660034)
-
(2000)
Epidemiology
, vol.11
, Issue.5
, pp. 550-560
-
-
Robins, J.M.1
Hernan, M.A.2
Brumback, B.3
-
12
-
-
0033839024
-
Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men
-
DOI 10.1097/00001648-200009000-00012
-
Hernán MA, Brumback B and Robins JM. Marginal structural models to estimate the causal effect of zidovudine on the survival of HIV-positive men. Epidemiology 2000; 11: 561-70. (Pubitemid 30660035)
-
(2000)
Epidemiology
, vol.11
, Issue.5
, pp. 561-570
-
-
Hernan, M.A.1
Brumback, B.2
Robins, J.M.3
-
14
-
-
84859374334
-
Analyzing sequentially randomised trials based on causal effect models for realistic individualised treatment rules
-
Bembom O and van der Laan MJ. Analyzing sequentially randomised trials based on causal effect models for realistic individualised treatment rules. COBRA (Collection of Biostatistics Research Archive); 2007.
-
(2007)
COBRA (Collection of Biostatistics Research Archive)
-
-
Bembom, O.1
Van Der Laan, M.J.2
-
15
-
-
33847633000
-
Causal effect models for realistic individualized treatment and intention to treat rules
-
Article 6
-
van der Laan MJ and Petersen ML. Causal effect models for realistic individualized treatment and intention to treat rules. International Journal of Biostatistics 2007; 3(1), Article 6.
-
(2007)
International Journal of Biostatistics
, vol.3
, Issue.1
-
-
Van Der Laan, M.J.1
Petersen, M.L.2
-
16
-
-
53849122359
-
Estimation and extrapolation of optimal treatment and testing strategies
-
Robins J, Orellana L and Rotnitzky A. Estimation and extrapolation of optimal treatment and testing strategies. Statistics in Medicine 2008; 27(23): 4678-721.
-
(2008)
Statistics in Medicine
, vol.27
, Issue.23
, pp. 4678-4721
-
-
Robins, J.1
Orellana, L.2
Rotnitzky, A.3
-
17
-
-
4944223958
-
Causal inference with general treatment regimes: Generalizing the propensity score
-
DOI 10.1198/016214504000001187
-
Imai K and Van Dyk DA. Causal inference with general treatment regimes: Generalizing the propensity score. Journal of the American Statistical Association 2004; 99(467): 854-66. (Pubitemid 39332867)
-
(2004)
Journal of the American Statistical Association
, vol.99
, Issue.467
, pp. 854-866
-
-
Imai, K.1
Van Dyk, D.A.2
-
18
-
-
0001815275
-
Causal inference from complex longitudinal data
-
Berkane M (ed.) New York: Springer-Verlag
-
Robins JM. Causal inference from complex longitudinal data. In: Berkane M (ed.) Latent variable modeling and applications to causality. New York: Springer-Verlag, 1997, pp.69-117.
-
(1997)
Latent Variable Modeling and Applications to Causality
, pp. 69-117
-
-
Robins, J.M.1
-
19
-
-
0002531157
-
Bayesian inference for causal effects: The role of randomization
-
Rubin DB. Bayesian inference for causal effects: The role of randomization. Annals of Statistics 1978; 6: 34-58.
-
(1978)
Annals of Statistics
, vol.6
, pp. 34-58
-
-
Rubin, D.B.1
-
20
-
-
77951622706
-
The central role of the propensity score in observational studies for causal effects
-
Rosenbaum PR and Rubin DB. The central role of the propensity score in observational studies for causal effects. Biometrika 1983; 70: 41-55.
-
(1983)
Biometrika
, vol.70
, pp. 41-55
-
-
Rosenbaum, P.R.1
Rubin, D.B.2
-
21
-
-
4344631105
-
Treatment dose-response in amblyopia therapy: The Monitored Occlusion Treatment of Amblyopia Study (MOTAS)
-
DOI 10.1167/iovs.04-0250
-
Stewart CE, Moseley MJ, Stephens DA and Fielder AR. Treatment dose-response in amblyopia therapy: The Monitored Occlusion Treatment of Amblyopia Study (MOTAS}). Investigations in Ophthalmology and Visual Science 2004; 45: 3048-54. (Pubitemid 39121835)
-
(2004)
Investigative Ophthalmology and Visual Science
, vol.45
, Issue.9
, pp. 3048-3054
-
-
Stewart, C.E.1
Moseley, M.J.2
Stephens, D.A.3
Fielder, A.R.4
-
23
-
-
33645236260
-
Variable selection for propensity score models
-
DOI 10.1093/aje/kwj149
-
Brookhart MA, Schneeweiss S, Rothman KJ, Glynn RJ, Avorn J and Sturmer T. Variable selection for propensity score models. American Journal of Epidemiology 2006; 163: 1149-56. (Pubitemid 43987579)
-
(2006)
American Journal of Epidemiology
, vol.163
, Issue.12
, pp. 1149-1156
-
-
Brookhart, M.A.1
Schneeweiss, S.2
Rothman, K.J.3
Glynn, R.J.4
Avorn, J.5
Sturmer, T.6
-
24
-
-
33846842327
-
A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study
-
DOI 10.1002/sim.2580
-
Austin PC, Grootendorst P and Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: A Monte Carlo study. Statistics in Medicine 2007; 26: 734-53. (Pubitemid 46206593)
-
(2007)
Statistics in Medicine
, vol.26
, Issue.4
, pp. 734-753
-
-
Austin, P.C.1
Grootendorst, P.2
Anderson, G.M.3
-
25
-
-
61749090370
-
A practical illustration of the importance of realistic individualised treatment rules in causal inference
-
Bembom O and van der LaanM. A practical illustration of the importance of realistic individualised treatment rules in causal inference. Electronic Journal of Statistics 2007; 1: 574-96.
-
(2007)
Electronic Journal of Statistics
, vol.1
, pp. 574-596
-
-
Bembom, O.1
Van Der Laan, M.2
-
28
-
-
40549104115
-
Misunderstandings between experimentalists and observationalists about causal inference
-
Imai K, King G and Stuart EA. Misunderstandings between experimentalists and observationalists about causal inference. Journal of the Royal Statistical Society, Series A 2008; 171: 481-502.
-
(2008)
Journal of the Royal Statistical Society, Series A
, vol.171
, pp. 481-502
-
-
Imai, K.1
King, G.2
Stuart, E.A.3
-
29
-
-
33847093302
-
Variable selection and raking in propensity scoring
-
DOI 10.1002/sim.2591
-
Judkins DR, Morganstein D, Zador P, Piesse A, Barrett B and Mukhopadhyay P. Variable selection and raking in propensity scoring. Statistics in Medicine 2007; 26: 1022-33. (Pubitemid 46291129)
-
(2007)
Statistics in Medicine
, vol.26
, Issue.5
, pp. 1022-1033
-
-
Judkins, D.R.1
Morganstein, D.2
Zador, P.3
Piesse, A.4
Barrett, B.5
Mukhopadhyay, P.6
|