-
1
-
-
1942542429
-
Age-related macular degeneration is the leading cause of blindness
-
doi: 15108691
-
Bressler NM. Age-related macular degeneration is the leading cause of blindness. JAMA. 2004; 291 (15): 1900-1901. doi: 10.1001/jama.291.15.1900 15108691
-
(2004)
JAMA
, vol.291
, Issue.15
, pp. 1900-1901
-
-
Bressler, N.M.1
-
2
-
-
0242526930
-
Potential public health impact of Age-Related Eye Disease Study results: AREDS report No. 11
-
doi: 14609922
-
Bressler NM, Bressler SB, Congdon NG,; Age-Related Eye Disease Study Research Group. Potential public health impact of Age-Related Eye Disease Study results: AREDS report No. 11. Arch Ophthalmol. 2003; 121 (11): 1621-1624. doi: 10.1001/archopht.121.11.1621 14609922
-
(2003)
Arch Ophthalmol
, vol.121
, Issue.11
, pp. 1621-1624
-
-
Bressler, N.M.1
Bressler, S.B.2
Congdon, N.G.3
-
3
-
-
0034759691
-
The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: The Age-Related Eye Disease Study Report Number 6
-
doi: 11704028
-
Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the Age-Related Eye Disease Study Report Number 6. Am J Ophthalmol. 2001; 132 (5): 668-681. doi: 10.1016/S0002-9394(01)01218-1 11704028
-
(2001)
Am J Ophthalmol
, vol.132
, Issue.5
, pp. 668-681
-
-
-
4
-
-
0034800655
-
A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report No. 8
-
doi: 11594942
-
Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report No. 8. Arch Ophthalmol. 2001; 119 (10): 1417-1436. doi: 10.1001/archopht.119.10.1417 11594942
-
(2001)
Arch Ophthalmol
, vol.119
, Issue.10
, pp. 1417-1436
-
-
-
5
-
-
27744508407
-
The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS report No. 17
-
doi: 16286610
-
Davis MD, Gangnon RE, Lee LY,; Age-Related Eye Disease Study Group. The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS report No. 17. Arch Ophthalmol. 2005; 123 (11): 1484-1498. doi: 10.1001/archopht.123.11.1484 16286610
-
(2005)
Arch Ophthalmol
, vol.123
, Issue.11
, pp. 1484-1498
-
-
Davis, M.D.1
Gangnon, R.E.2
Lee, L.Y.3
-
6
-
-
70349251236
-
Description of the Age-Related Eye Disease Study 9-step severity scale applied to participants in the Complications of Age-Related Macular Degeneration Prevention Trial
-
doi: 19752423
-
Ying GS, Maguire MG, Alexander J, Martin RW, Antoszyk AN; Complications of Age-related Macular Degeneration Prevention Trial Research Group. Description of the Age-Related Eye Disease Study 9-step severity scale applied to participants in the Complications of Age-Related Macular Degeneration Prevention Trial. Arch Ophthalmol. 2009; 127 (9): 1147-1151. doi: 10.1001/archophthalmol.2009.189 19752423
-
(2009)
Arch Ophthalmol
, vol.127
, Issue.9
, pp. 1147-1151
-
-
Ying, G.S.1
Maguire, M.G.2
Alexander, J.3
Martin, R.W.4
Antoszyk, A.N.5
-
7
-
-
27744516278
-
A simplified severity scale for age-related macular degeneration: AREDS report No. 18
-
doi: 16286620
-
Ferris FL, Davis MD, Clemons TE,; Age-Related Eye Disease Study (AREDS) Research Group. A simplified severity scale for age-related macular degeneration: AREDS report No. 18. Arch Ophthalmol. 2005; 123 (11): 1570-1574. doi: 10.1001/archopht.123.11.1570 16286620
-
(2005)
Arch Ophthalmol
, vol.123
, Issue.11
, pp. 1570-1574
-
-
Ferris, F.L.1
Davis, M.D.2
Clemons, T.E.3
-
8
-
-
84894413349
-
Current knowledge and trends in age-related macular degeneration: Genetics, epidemiology, and prevention
-
doi: 24285245
-
Velez-Montoya R, Oliver SCN, Olson JL, Fine SL, Quiroz-Mercado H, Mandava N. Current knowledge and trends in age-related macular degeneration: genetics, epidemiology, and prevention. Retina. 2014; 34 (3): 423-441. doi: 10.1097/IAE.0000000000000036 24285245
-
(2014)
Retina
, vol.34
, Issue.3
, pp. 423-441
-
-
Velez-Montoya, R.1
Oliver, S.C.N.2
Olson, J.L.3
Fine, S.L.4
Quiroz-Mercado, H.5
Mandava, N.6
-
9
-
-
20444450633
-
-
US Census Bureau.. Washington, DC: US Census Bureau
-
US Department of Commerce; US Census Bureau. Statistical Abstract of the United States, 2012. Washington, DC: US Census Bureau; 2012.
-
(2012)
Statistical Abstract of the United States, 2012
-
-
-
10
-
-
80055056272
-
Automatic segmentation of the left-ventricular cavity and atrium in 3D ultrasound using graph cuts and the radial symmetry transform
-
Piscataway, NJ: Institute of Electric and Electronics Engineers
-
Juang R, McVeigh E, Hoffmann B, Yuh D, Burlina P. Automatic segmentation of the left-ventricular cavity and atrium in 3D ultrasound using graph cuts and the radial symmetry transform. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro. Piscataway, NJ: Institute of Electric and Electronics Engineers; 2011: 606-609. doi: 10.1109/ISBI.2011.5872480
-
(2011)
2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
, pp. 606-609
-
-
Juang, R.1
McVeigh, E.2
Hoffmann, B.3
Yuh, D.4
Burlina, P.5
-
11
-
-
84055212013
-
Automatic screening of age-related macular degeneration and retinal abnormalities
-
doi: 22255207
-
Burlina P, Freund DE, Dupas B, Bressler N. Automatic screening of age-related macular degeneration and retinal abnormalities. Conf Proc IEEE Eng Med Biol Soc. 2011; 2011: 3962-2966. doi: 10.1109/IEMBS.2011.6090984 22255207
-
(2011)
Conf Proc IEEE Eng Med Biol Soc
, vol.2011
, pp. 2966-3962
-
-
Burlina, P.1
Freund, D.E.2
Dupas, B.3
Bressler, N.4
-
12
-
-
85028647173
-
Automated diagnosis of myositis from muscle ultrasound: Exploring the use of machine learning and deep learning methods
-
doi: 28854220
-
Burlina P, Billings S, Joshi N, Albayda J. Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods. PLoS One. 2017; 12 (8): e0184059. doi: 10.1371/journal.pone.0184059 28854220
-
(2017)
PLoS One
, vol.12
, Issue.8
, pp. e0184059
-
-
Burlina, P.1
Billings, S.2
Joshi, N.3
Albayda, J.4
-
13
-
-
85038438910
-
Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes
-
doi: 29234807
-
Ting DSW, Cheung CY, Lim G, Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017; 318 (22): 2211-2223. doi: 10.1001/jama.2017.18152 29234807
-
(2017)
JAMA
, vol.318
, Issue.22
, pp. 2211-2223
-
-
Ting, D.S.W.1
Cheung, C.Y.2
Lim, G.3
-
14
-
-
85007529863
-
Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
-
doi: 27898976
-
Gulshan V, Peng L, Coram M, Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA. 2016; 316 (22): 2402-2410. doi: 10.1001/jama.2016.17216 27898976
-
(2016)
JAMA
, vol.316
, Issue.22
, pp. 2402-2410
-
-
Gulshan, V.1
Peng, L.2
Coram, M.3
-
15
-
-
85019077750
-
Deep image mining for diabetic retinopathy screening
-
doi: 28511066
-
Quellec G, Charrière K, Boudi Y, Cochener B, Lamard M. Deep image mining for diabetic retinopathy screening. Med Image Anal. 2017; 39: 178-193. doi: 10.1016/j.media.2017.04.012 28511066
-
(2017)
Med Image Anal
, vol.39
, pp. 178-193
-
-
Quellec, G.1
Charrière, K.2
Boudi, Y.3
Cochener, B.4
Lamard, M.5
-
16
-
-
85016221341
-
Automated identification of diabetic retinopathy using deep learning
-
doi: 28359545
-
Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology. 2017; 124 (7): 962-969. doi: 10.1016/j.ophtha.2017.02.008 28359545
-
(2017)
Ophthalmology
, vol.124
, Issue.7
, pp. 962-969
-
-
Gargeya, R.1
Leng, T.2
-
17
-
-
85034636594
-
Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks
-
doi: 28973096
-
Burlina PM, Joshi N, Pekala M, Pacheco KD, Freund DE, Bressler NM. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophthalmol. 2017; 135 (11): 1170-1176. doi: 10.1001/jamaophthalmol.2017.3782 28973096
-
(2017)
JAMA Ophthalmol
, vol.135
, Issue.11
, pp. 1170-1176
-
-
Burlina, P.M.1
Joshi, N.2
Pekala, M.3
Pacheco, K.D.4
Freund, D.E.5
Bressler, N.M.6
-
18
-
-
85045109230
-
A deep learning algorithm for prediction of Age-Related Eye Disease Study severity scale for age-related macular degeneration from color fundus photography
-
doi: 29653860
-
Grassmann F, Mengelkamp J, Brandl C, A deep learning algorithm for prediction of Age-Related Eye Disease Study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology. 2018; 125 (9): 1410-1420. doi: 10.1016/j.ophtha.2018.02.037 29653860
-
(2018)
Ophthalmology
, vol.125
, Issue.9
, pp. 1410-1420
-
-
Grassmann, F.1
Mengelkamp, J.2
Brandl, C.3
-
19
-
-
85012245192
-
Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis
-
doi: 28167406
-
Burlina P, Pacheco KD, Joshi N, Freund DE, Bressler NM. Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput Biol Med. 2017; 82: 80-86. doi: 10.1016/j.compbiomed.2017.01.018 28167406
-
(2017)
Comput Biol Med
, vol.82
, pp. 80-86
-
-
Burlina, P.1
Pacheco, K.D.2
Joshi, N.3
Freund, D.E.4
Bressler, N.M.5
-
20
-
-
84986274465
-
Deep residual learning for image recognition
-
Piscataway, NJ: Institute of Electric and Electronics Engineers
-
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, NJ: Institute of Electric and Electronics Engineers; 2016: 771-778.
-
(2016)
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
, pp. 771-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
21
-
-
0033436360
-
The Age-Related Eye Disease Study (AREDS): Design implications: AREDS report No. 1
-
doi: 10588299
-
Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study (AREDS): design implications: AREDS report No. 1. Control Clin Trials. 1999; 20 (6): 573-600. doi: 10.1016/S0197-2456(99)00031-8 10588299
-
(1999)
Control Clin Trials
, vol.20
, Issue.6
, pp. 573-600
-
-
-
22
-
-
85184282159
-
-
Scikit Learn.. Accessed June 15, 2018
-
Scikit Learn. http://scikit-learn.org/stable/modules/generated/sklearn.metrics.cohen-kappa-score.html. Accessed June 15, 2018.
-
-
-
-
23
-
-
0017360990
-
The measurement of observer agreement for categorical data
-
doi: 843571
-
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977; 33 (1): 159-174. doi: 10.2307/2529310 843571
-
(1977)
Biometrics
, vol.33
, Issue.1
, pp. 159-174
-
-
Landis, J.R.1
Koch, G.G.2
-
25
-
-
85049358982
-
-
arXiv.. Published January 29, Accessed August 13, 2018
-
Pekala M, Joshi N, Freund DE, Bressler NM, Cabrera Debuc D, Burlina P. Deep learning based retinal OCT segmentation. arXiv. https://arxiv.org/abs/1801.09749. Published January 29, 2018. Accessed August 13, 2018.
-
(2018)
Deep learning based retinal OCT segmentation
-
-
Pekala, M.1
Joshi, N.2
Freund, D.E.3
Bressler, N.M.4
Cabrera Debuc, D.5
Burlina, P.6
|