메뉴 건너뛰기




Volumn , Issue 79, 2013, Pages

Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA

Author keywords

Analytical Ultracentrifugation; Atomic Force (AFM); Biochemistry; Cellular biology; Chromatin; Chromosome structures; Histone; Histones; Issue 79; Microscopy; Nucleosomal array; Nucleosome; Nucleosomes; Sedimentation velocity

Indexed keywords

CHROMATIN; DNA; HISTONE; NUCLEOSOME;

EID: 85052429870     PISSN: 1940087X     EISSN: None     Source Type: Journal    
DOI: 10.3791/50354     Document Type: Article
Times cited : (32)

References (40)
  • 1
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 A resolution
    • Luger, K., Mader, A., Richmond, R., & Sargent, D. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 7, (1997).
    • (1997) Nature , pp. 7
  • 2
    • 0036089388 scopus 로고    scopus 로고
    • Conformational dynamics of the chromatin fiber in solution: Determinants, mechanisms, and functions
    • Hansen, J.C. Conformational dynamics of the chromatin fiber in solution: determinants, mechanisms, and functions. Annual Review of Biophysics and Biomolecular Structure. 31, 361-92 (2002).
    • (2002) Annual Review of Biophysics and Biomolecular Structure , vol.31 , pp. 361-392
  • 3
    • 33644632571 scopus 로고    scopus 로고
    • Chromatin architectural proteins
    • McBryant, S., Adams, V., & Hansen, J. Chromatin architectural proteins. Chromosome Research. 14(1), 39-51 (2006).
    • (2006) Chromosome Research , vol.14 , Issue.1 , pp. 39-51
  • 4
    • 0024468871 scopus 로고
    • Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1
    • Hansen, J.C., Ausio, J., Stanik, V.H., & van Holde, K.E. Homogeneous reconstituted oligonucleosomes, evidence for salt-dependent folding in the absence of histone H1. Biochemistry. 28(23), 9129-36 (1989).
    • (1989) Biochemistry , vol.28 , Issue.23 , pp. 9129-9136
  • 5
    • 77957759247 scopus 로고    scopus 로고
    • Activator-dependent p300 acetylation of chromatin in vitro: Enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions
    • Szerlong, H.J., Prenni, J.E., Nyborg, J.K., & Hansen, J.C. Activator-dependent p300 acetylation of chromatin in vitro: enhancement of transcription by disruption of repressive nucleosome-nucleosome interactions. The Journal of Biological Chemistry. 285(42), 31954-64 (2010).
    • (2010) The Journal of Biological Chemistry , vol.285 , Issue.42 , pp. 31954-31964
  • 6
    • 0036184236 scopus 로고    scopus 로고
    • Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4
    • Cirillo, L.A., Lin, F.R., Cuesta, I., Friedman, D., Jarnik, M., & Zaret, K.S. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Molecular Cell. 9(2), 279-89 (2002).
    • (2002) Molecular Cell , vol.9 , Issue.2 , pp. 279-289
  • 7
    • 0035890665 scopus 로고    scopus 로고
    • Chromatin structure associated with methylation-induced gene silencing in cancer cells: Correlation of accessibility, methylation, MeCP2 binding and acetylation
    • Nguyen, C. & Gonzales, F. Chromatin structure associated with methylation-induced gene silencing in cancer cells: correlation of accessibility, methylation, MeCP2 binding and acetylation. Nucleic Acids Research. 29(22), 4598-4606 (2001).
    • (2001) Nucleic Acids Research , vol.29 , Issue.22 , pp. 4598-4606
  • 8
    • 35148815265 scopus 로고    scopus 로고
    • The forkhead factor FoxE1 binds to the thyroperoxidase promoter during thyroid cell differentiation and modifies compacted chromatin structure
    • Cuesta, I., Zaret, K.S., & Santisteban, P. The forkhead factor FoxE1 binds to the thyroperoxidase promoter during thyroid cell differentiation and modifies compacted chromatin structure. Molecular and Cellular Biology. 27(20), 7302-14 (2007).
    • (2007) Molecular and Cellular Biology , vol.27 , Issue.20 , pp. 7302-7314
  • 9
    • 0020695571 scopus 로고
    • Structural features of a phased nucleosome core particle
    • Simpson, R.T. & Stafford, D.W. Structural features of a phased nucleosome core particle. Proceedings of the National Academy of Sciences of the U S A. 80(1), 51-5 (1983).
    • (1983) Proceedings of the National Academy of Sciences of the U S A , vol.80 , Issue.1 , pp. 51-55
  • 10
    • 0032512794 scopus 로고    scopus 로고
    • New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning
    • Lowary, P.T. & Widom, J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. Journal of Molecular Biology. 276(1), 19-42 (1998).
    • (1998) Journal of Molecular Biology , vol.276 , Issue.1 , pp. 19-42
  • 11
    • 0039837085 scopus 로고    scopus 로고
    • Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences
    • Lowary, P., Widlund, H., & Cao, H. Sequence motifs and free energies of selected natural and non-natural nucleosome positioning DNA sequences. Journal of Molecular Biology. 288, 213-229 (1999).
    • (1999) Journal of Molecular Biology , vol.288 , pp. 213-229
  • 12
    • 26644471508 scopus 로고    scopus 로고
    • The Core Histone N-terminal Tail Domains Function Independently and Additively during Salt-dependent Oligomerization of Nucleosomal Arrays *
    • Gordon, F., Luger, K., & Hansen, J.C. The Core Histone N-terminal Tail Domains Function Independently and Additively during Salt-dependent Oligomerization of Nucleosomal Arrays *. The Journal of Biological Chemistry. 280(40), 33701-33706 (2005).
    • (2005) The Journal of Biological Chemistry , vol.280 , Issue.40 , pp. 33701-33706
  • 13
    • 0033289822 scopus 로고    scopus 로고
    • Expression and purification of recombinant histones and nucleosome reconstitution
    • Luger, K., Rechsteiner, T.J., & Richmond, T.J. Expression and purification of recombinant histones and nucleosome reconstitution. Methods in Molecular Biology (Clifton, N.J.) 119(4), 1-16 (1999).
    • (1999) Methods In Molecular Biology (Clifton, N.J.) , vol.119 , Issue.4 , pp. 1-16
  • 14
    • 67650531093 scopus 로고    scopus 로고
    • Determinants of histone H4 N-terminal domain function during nucleosomal array oligomerization: Roles of amino acid sequence, domain length, and charge density
    • McBryant, S.J., Klonoski, J., et al. Determinants of histone H4 N-terminal domain function during nucleosomal array oligomerization: roles of amino acid sequence, domain length, and charge density. The Journal of Biological Chemistry. 284(25), 16716-22 (2009).
    • (2009) The Journal of Biological Chemistry , vol.284 , Issue.25 , pp. 16716-16722
    • McBryant, S.J.1    Klonoski, J.2
  • 15
    • 0038047672 scopus 로고    scopus 로고
    • A native peptide ligation strategy for deciphering nucleosomal histone modifications
    • Shogren-Knaak, M. A, Fry, C.J., & Peterson, C.L. A native peptide ligation strategy for deciphering nucleosomal histone modifications. The Journal of Biological Chemistry. 278(18), 15744-8 (2003).
    • (2003) The Journal of Biological Chemistry , vol.278 , Issue.18 , pp. 15744-15748
    • Shogren-Knaak, M.A.1    Fry, C.J.2    Peterson, C.L.3
  • 16
    • 53549124960 scopus 로고    scopus 로고
    • The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure
    • Lu, X. & Simon, M. The effect of H3K79 dimethylation and H4K20 trimethylation on nucleosome and chromatin structure. Nat Struct Mol Biol. 15(10), 1122-1124 (2008).
    • (2008) Nat Struct Mol Biol , vol.15 , Issue.10 , pp. 1122-1124
  • 17
    • 0034734277 scopus 로고    scopus 로고
    • Analytical Ultracentrifugation for the Analysis of Chromatin Structure
    • Ausio, J. Analytical Ultracentrifugation for the Analysis of Chromatin Structure. Biophysical Chemistry. 86, (2/3)141-153 (2000).
    • (2000) Biophysical Chemistry , vol.86 , Issue.2-3 , pp. 141-153
  • 18
    • 0031149249 scopus 로고    scopus 로고
    • Analytical ultracentrifugation and agarose gel electrophoresis as tools for studying chromatin folding in solution
    • Hansen, J., Kreider, J., Demeler, B., & Fletcher, T. Analytical ultracentrifugation and agarose gel electrophoresis as tools for studying chromatin folding in solution. Methods. 12(1), 62-72 (1997).
    • (1997) Methods , vol.12 , Issue.1 , pp. 62-72
  • 19
    • 68949136888 scopus 로고    scopus 로고
    • The dynamics of individual nucleosomes controls the chromatin condensation pathway: Direct atomic force microscopy visualization of variant chromatin
    • Montel, F., Menoni, H., et al. The dynamics of individual nucleosomes controls the chromatin condensation pathway: direct atomic force microscopy visualization of variant chromatin. Biophysical Journal. 97(2), 544-53 (2009).
    • (2009) Biophysical Journal , vol.97 , Issue.2 , pp. 544-553
    • Montel, F.1    Menoni, H.2
  • 20
    • 79959870239 scopus 로고    scopus 로고
    • The linker region of macroH2A promotes self-association of nucleosomal arrays
    • Muthurajan, U.M., McBryant, S.J., Lu, X., Hansen, J.C., & Luger, K. The linker region of macroH2A promotes self-association of nucleosomal arrays. The Journal of Biological Chemistry. 286(27), 23852-64 (2011).
    • (2011) The Journal of Biological Chemistry , vol.286 , Issue.27 , pp. 23852-23864
  • 21
    • 69049097259 scopus 로고    scopus 로고
    • Dynamics of nucleosomes revealed by time-lapse atomic force microscopy
    • Shlyakhtenko, L.S., Lushnikov, A.Y., & Lyubchenko, Y.L. Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. Biochemistry. 48(33), 7842-8 (2009).
    • (2009) Biochemistry , vol.48 , Issue.33 , pp. 7842-7848
  • 22
    • 33847026837 scopus 로고    scopus 로고
    • Using atomic force microscopy to study chromatin structure and nucleosome remodeling
    • Lohr, D., Bash, R., Wang, H., Yodh, J., & Lindsay, S. Using atomic force microscopy to study chromatin structure and nucleosome remodeling. Methods (San Diego, Calif.). 41(3), 333-41 (2007).
    • (2007) Methods (San Diego, Calif.) , vol.41 , Issue.3 , pp. 333-341
  • 23
    • 1542334851 scopus 로고    scopus 로고
    • Reconstitution of nucleosome core particles from recombinant histones and DNA
    • Dyer, P.N., Edayathumangalam, R.S., et al. Reconstitution of nucleosome core particles from recombinant histones and DNA. Methods in Enzymology. 375, 23-44 (2004).
    • (2004) Methods In Enzymology , vol.375 , pp. 23-44
    • Dyer, P.N.1    Edayathumangalam, R.S.2
  • 24
    • 0040768065 scopus 로고    scopus 로고
    • Cold Spring Harbor Laboratory Press
    • Sambrook, J. & Russell, D. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, (2001).
    • (2001) Molecular Cloning: A Laboratory Manual
  • 25
    • 78650931151 scopus 로고    scopus 로고
    • Assembly, loading, and alignment of an analytical ultracentrifuge sample cell
    • doi:10.3791/1530
    • Balbo, A., Zhao, H., Brown, P.H., & Schuck, P. Assembly, loading, and alignment of an analytical ultracentrifuge sample cell. Journal of Visualized Experiments. JoVE (33)3/5.doi:10.3791/1530 (2009).
    • (2009) Journal of Visualized Experiments. JoVE , vol.33 , Issue.3-5
  • 26
    • 33744816438 scopus 로고    scopus 로고
    • UltraScan: A comprehensive data analysis software package for analytical ultracentrifugation experiments
    • Demeler, B. UltraScan: a comprehensive data analysis software package for analytical ultracentrifugation experiments. Modern Analytical Ultracentrifugation: Techniques. 210-230 (2005).
    • (2005) Modern Analytical Ultracentrifugation: Techniques , pp. 210-230
  • 27
    • 0017806223 scopus 로고
    • Boundary analysis of sedimentation velocity experiments with monodisperse and paucidisperse solutes
    • Holde, K.V. & Weischet, W. Boundary analysis of sedimentation velocity experiments with monodisperse and paucidisperse solutes. Biopolymers. 17(6), 1387-1403 (1978).
    • (1978) Biopolymers , vol.17 , Issue.6 , pp. 1387-1403
  • 28
    • 8844265931 scopus 로고    scopus 로고
    • Sedimentation velocity analysis of highly heterogeneous systems
    • Demeler, B. & van Holde, K.E. Sedimentation velocity analysis of highly heterogeneous systems. Analytical Biochemistry. 335, 279-288 (2004).
    • (2004) Analytical Biochemistry , vol.335 , pp. 279-288
  • 29
    • 0027412701 scopus 로고
    • Assembly and structural properties of subsaturated chromatin arrays
    • Hansen, J. & Lohr, D. Assembly and structural properties of subsaturated chromatin arrays. Journal of Biological Chemistry. 8, 5840-5848 (1993).
    • (1993) Journal of Biological Chemistry , vol.8 , pp. 5840-5848
  • 30
    • 48249103503 scopus 로고    scopus 로고
    • Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure
    • Routh, A., Sandin, S., & Rhodes, D. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proceedings of the National Academy of Sciences of the U S A. 105(26), 8872-7 (2008).
    • (2008) Proceedings of the National Academy of Sciences of the U S A , vol.105 , Issue.26 , pp. 8872-8877
  • 31
    • 35848931678 scopus 로고    scopus 로고
    • The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression
    • Zhou, J., Fan, J.Y., Rangasamy, D., & Tremethick, D.J. The nucleosome surface regulates chromatin compaction and couples it with transcriptional repression. Nature Structural & Molecular Biology. 14(11), 1070-6 (2007).
    • (2007) Nature Structural & Molecular Biology , vol.14 , Issue.11 , pp. 1070-1076
  • 32
    • 9444297879 scopus 로고    scopus 로고
    • Nucleosome arrays reveal the two-start organization of the chromatin fiber
    • New York, N.Y
    • Dorigo, B., Schalch, T., Kulangara, A., Duda, S., Schroeder, R.R., & Richmond, T.J. Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science (New York, N.Y.). 306(5701), 1571-3 (2004).
    • (2004) Science , vol.306 , Issue.5701 , pp. 1571-1573
  • 33
    • 84861116574 scopus 로고    scopus 로고
    • Short nucleosome repeats impose rotational modulations on chromatin fibre folding
    • Correll, S.J., Schubert, M.H., & Grigoryev, S. a Short nucleosome repeats impose rotational modulations on chromatin fibre folding. The EMBO Journal. 31(10), 2416-26 (2012).
    • (2012) The EMBO Journal , vol.31 , Issue.10 , pp. 2416-2426
    • Correll, S.J.1    Schubert, M.H.2    Grigoryev, S.3
  • 34
    • 44349116198 scopus 로고    scopus 로고
    • The Silent Information Regulator 3 Protein, SIR3p, Binds to Chromatin Fibers and Assembles a Hypercondensed Chromatin Architecture in the Presence of Salt
    • Mcbryant, S.J., Krause, C., Woodcock, C.L., & Hansen, J.C. The Silent Information Regulator 3 Protein, SIR3p, Binds to Chromatin Fibers and Assembles a Hypercondensed Chromatin Architecture in the Presence of Salt. Molecular and Cellular Biology. 28(11), 3563-3572 (2008).
    • (2008) Molecular and Cellular Biology , vol.28 , Issue.11 , pp. 3563-3572
  • 35
    • 21844436803 scopus 로고    scopus 로고
    • X-ray structure of a tetranucleosome and its implications for the chromatin fibre
    • Schalch, T., Duda, S., Sargent, D.F., & Richmond, T.J. X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature. 436(7047), 138-41 (2005).
    • (2005) Nature , vol.436 , Issue.7047 , pp. 138-141
  • 36
    • 0036183219 scopus 로고    scopus 로고
    • The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states
    • Fan, J.Y., Gordon, F., Luger, K., Hansen, J.C., & Tremethick, D.J. The essential histone variant H2A.Z regulates the equilibrium between different chromatin conformational states. Nature Structural Biology. 9(3), 172-6 (2002).
    • (2002) Nature Structural Biology , vol.9 , Issue.3 , pp. 172-176
  • 37
    • 0032553013 scopus 로고    scopus 로고
    • Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: Mechanistic ramifications for higher-order chromatin folding
    • Carruthers, L.M., Bednar, J., Woodcock, C.L., & Hansen, J.C. Linker histones stabilize the intrinsic salt-dependent folding of nucleosomal arrays: mechanistic ramifications for higher-order chromatin folding. Biochemistry. 37(42), 14776-87 (1998).
    • (1998) Biochemistry , vol.37 , Issue.42 , pp. 14776-14787
  • 38
    • 11844299709 scopus 로고    scopus 로고
    • A Method for the In Vitro Reconstitution of a Defined 30 nm Chromatin Fibre Containing Stoichiometric Amounts of the Linker Histone
    • Huynh, V.A.T., Robinson, P.J.J., & Rhodes, D. A Method for the In Vitro Reconstitution of a Defined 30 nm Chromatin Fibre Containing Stoichiometric Amounts of the Linker Histone. Journal of Molecular Biology. 345(5), 957-968 (2005).
    • (2005) Journal of Molecular Biology , vol.345 , Issue.5 , pp. 957-968
  • 39
    • 0037436410 scopus 로고    scopus 로고
    • Chromatin fiber folding: Requirement for the histone H4 N-terminal tail
    • Dorigo, B. & Schalch, T. Chromatin fiber folding: requirement for the histone H4 N-terminal tail. J. Mol. Biol. 2836(03), 85-96 (2003).
    • (2003) J. Mol. Biol , vol.2836 , Issue.3 , pp. 85-96
  • 40
    • 0031306283 scopus 로고    scopus 로고
    • Visualization of chromatin folding patterns in chicken erythrocytes by atomic force microscopy (AFM)
    • Qian, R.L., Liu, Z.X., et al. Visualization of chromatin folding patterns in chicken erythrocytes by atomic force microscopy (AFM). Cell Research. 7(2), 143-50 (1997).
    • (1997) Cell Research , vol.7 , Issue.2 , pp. 143-150
    • Qian, R.L.1    Liu, Z.X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.