메뉴 건너뛰기




Volumn 241, Issue , 2018, Pages 519-532

Corrigendum to “Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review.” J Affect Disord. 241 (2018) 519-532 (Journal of Affective Disorders (2018) 241 (519–532), (S0165032718304853), (10.1016/j.jad.2018.08.073));Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review

(19)  Lee, Yena a,b,c   Ragguett, Renee Marie b,c   Mansur, Rodrigo B b,c,d   Boutilier, Justin J d   Rosenblat, Joshua D b,d   Trevizol, Alisson b   Brietzke, Elisa b,e   Lin, Kangguang f,g   Pan, Zihang a,b,c   Subramaniapillai, Mehala b,c   Chan, Timothy C Y d   Fus, Dominika b,c   Park, Caroline a,b,c   Musial, Natalie b,c   Zuckerman, Hannah b,c   Chen, Vincent Chin Hung i,j   Ho, Roger h   Rong, Carola b,c   McIntyre, Roger S a,b,c,d  


Author keywords

Artificial intelligence; Automated pattern recognition; Bipolar disorder; Machine learning; Major depressive disorder; Mood disorders; Neural networks (computer); Treatment outcome

Indexed keywords

ANTIDEPRESSANT AGENT;

EID: 85052219946     PISSN: 01650327     EISSN: 15732517     Source Type: Journal    
DOI: 10.1016/j.jad.2020.02.037     Document Type: Erratum
Times cited : (200)

References (72)
  • 1
    • 85003545084 scopus 로고    scopus 로고
    • Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification
    • Al-Kaysi, A.M., Al-Ani, A., Loo, C.K., Powell, T.Y., Martin, D.M., Breakspear, M., Boonstra, T.W., Predicting tDCS treatment outcomes of patients with major depressive disorder using automated EEG classification. J. Affect. Disord. 208 (2017), 597–603, 10.1016/j.jad.2016.10.021.
    • (2017) J. Affect. Disord. , vol.208 , pp. 597-603
    • Al-Kaysi, A.M.1    Al-Ani, A.2    Loo, C.K.3    Powell, T.Y.4    Martin, D.M.5    Breakspear, M.6    Boonstra, T.W.7
  • 3
    • 34547146985 scopus 로고    scopus 로고
    • Network medicine–from obesity to the “diseasome”
    • Barabási, A.-L., Network medicine–from obesity to the “diseasome”. N. Engl. J. Med. 357:4 (2007), 404–407, 10.1056/NEJMe078114.
    • (2007) N. Engl. J. Med. , vol.357 , Issue.4 , pp. 404-407
    • Barabási, A.-L.1
  • 4
    • 0028659004 scopus 로고
    • Operating characteristics of a rank correlation test for publication bias
    • Begg, C.B., Mazumdar, M., Operating characteristics of a rank correlation test for publication bias. Biometrics 50:4 (1994), 1088–1101.
    • (1994) Biometrics , vol.50 , Issue.4 , pp. 1088-1101
    • Begg, C.B.1    Mazumdar, M.2
  • 5
    • 84978484144 scopus 로고    scopus 로고
    • Predisposition to treatment response in major depressive episode: a peripheral blood gene coexpression network analysis
    • Belzeaux, R., Lin, C.-W., Ding, Y., Bergon, A., Ibrahim, E.C., Turecki, G., Tseng, G., Sibille, E., Predisposition to treatment response in major depressive episode: a peripheral blood gene coexpression network analysis. J. Psychiatr. Res. 81 (2016), 119–126, 10.1016/j.jpsychires.2016.07.009.
    • (2016) J. Psychiatr. Res. , vol.81 , pp. 119-126
    • Belzeaux, R.1    Lin, C.-W.2    Ding, Y.3    Bergon, A.4    Ibrahim, E.C.5    Turecki, G.6    Tseng, G.7    Sibille, E.8
  • 6
    • 85041104529 scopus 로고    scopus 로고
    • Machine learning for precision psychiatry: opportunites and challenges
    • Bzdok, D., Meyer-Lindenberg, A., Machine learning for precision psychiatry: opportunites and challenges. Biol. Psychiatry, 2017, 10.1016/j.bpsc.2017.11.007.
    • (2017) Biol. Psychiatry
    • Bzdok, D.1    Meyer-Lindenberg, A.2
  • 7
    • 85017596150 scopus 로고    scopus 로고
    • Reevaluating the efficacy and predictability of antidepressant treatments: a symptom clustering approach
    • Chekroud, A.M., Gueorguieva, R., Krumholz, H.M., Trivedi, M.H., Krystal, J.H., McCarthy, G., Reevaluating the efficacy and predictability of antidepressant treatments: a symptom clustering approach. JAMA Psychiatry 74:4 (2017), 370–378, 10.1001/jamapsychiatry.2017.0025.
    • (2017) JAMA Psychiatry , vol.74 , Issue.4 , pp. 370-378
    • Chekroud, A.M.1    Gueorguieva, R.2    Krumholz, H.M.3    Trivedi, M.H.4    Krystal, J.H.5    McCarthy, G.6
  • 9
    • 0001072895 scopus 로고
    • The use of confidence or fiducial limits illustrated in the case of the binomial
    • Clopper, C.J., Pearson, E.S., The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26:4 (1934), 404–413, 10.2307/2331986.
    • (1934) Biometrika , vol.26 , Issue.4 , pp. 404-413
    • Clopper, C.J.1    Pearson, E.S.2
  • 10
    • 85052240318 scopus 로고    scopus 로고
    • Cochrane Collaboration, T. Cochrane Handbook for Systematic Reviews of Interventions.
    • Cochrane Collaboration, T., 2011. Cochrane Handbook for Systematic Reviews of Interventions.
    • (2011)
  • 11
    • 67049115926 scopus 로고    scopus 로고
    • Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression
    • Costafreda, S.G., Khanna, A., Mourao-Miranda, J., Fu, C.H.Y., Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport 20:7 (2009), 637–641, 10.1097/WNR.0b013e3283294159.
    • (2009) Neuroreport , vol.20 , Issue.7 , pp. 637-641
    • Costafreda, S.G.1    Khanna, A.2    Mourao-Miranda, J.3    Fu, C.H.Y.4
  • 13
    • 0442309557 scopus 로고    scopus 로고
    • A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis
    • Duval, S., Tweedie, R., A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 95:449 (2000), 89–98, 10.1080/01621459.2000.10473905.
    • (2000) J. Am. Stat. Assoc. , vol.95 , Issue.449 , pp. 89-98
    • Duval, S.1    Tweedie, R.2
  • 14
    • 0033934949 scopus 로고    scopus 로고
    • Trim and fill: a simple funnel-Plot–Based method of testing and adjusting for publication bias in meta-analysis
    • Duval, S., Tweedie, R., Trim and fill: a simple funnel-Plot–Based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:2 (2000), 455–463, 10.1111/j.0006-341X.2000.00455.x.
    • (2000) Biometrics , vol.56 , Issue.2 , pp. 455-463
    • Duval, S.1    Tweedie, R.2
  • 15
    • 0030922816 scopus 로고    scopus 로고
    • Bias in meta-analysis detected by a simple, graphical test
    • Egger, M., Davey Smith, G., Schneider, M., Minder, C., Bias in meta-analysis detected by a simple, graphical test. BMJ 315:7109 (1997), 629–634.
    • (1997) BMJ , vol.315 , Issue.7109 , pp. 629-634
    • Egger, M.1    Davey Smith, G.2    Schneider, M.3    Minder, C.4
  • 16
    • 84939989691 scopus 로고    scopus 로고
    • A cognitive-emotional biomarker for predicting remission with antidepressant medications: a report from the iSPOT-D trial
    • Etkin, A., Patenaude, B., Song, Y.J.C., Usherwood, T., Rekshan, W., Schatzberg, A.F., Rush, A.J., Williams, L.M., A cognitive-emotional biomarker for predicting remission with antidepressant medications: a report from the iSPOT-D trial. Neuropsychopharmacology 40:6 (2015), 1332–1342, 10.1038/npp.2014.333.
    • (2015) Neuropsychopharmacology , vol.40 , Issue.6 , pp. 1332-1342
    • Etkin, A.1    Patenaude, B.2    Song, Y.J.C.3    Usherwood, T.4    Rekshan, W.5    Schatzberg, A.F.6    Rush, A.J.7    Williams, L.M.8
  • 17
    • 0000694159 scopus 로고
    • Transformations related to the angular and the square root
    • Freeman, M.F., Tukey, J.W., Transformations related to the angular and the square root. Ann. Math. Stat. 21:4 (1950), 607–611.
    • (1950) Ann. Math. Stat. , vol.21 , Issue.4 , pp. 607-611
    • Freeman, M.F.1    Tukey, J.W.2
  • 18
    • 85043584927 scopus 로고    scopus 로고
    • Computational nosology and precision psychiatry
    • Friston, K.J., Redish, A.D., Gordon, J.A., Computational nosology and precision psychiatry. Comput. Psychiatry 1 (2017), 2–23, 10.1162/CPSY_a_00001.
    • (2017) Comput. Psychiatry , vol.1 , pp. 2-23
    • Friston, K.J.1    Redish, A.D.2    Gordon, J.A.3
  • 19
    • 85023199388 scopus 로고    scopus 로고
    • Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks
    • Gadad, B.S., Jha, M.K., Czysz, A., Furman, J.L., Mayes, T.L., Emslie, M.P., Trivedi, M.H., Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks. J. Affect. Disord., 2017, 10.1016/j.jad.2017.07.001.
    • (2017) J. Affect. Disord.
    • Gadad, B.S.1    Jha, M.K.2    Czysz, A.3    Furman, J.L.4    Mayes, T.L.5    Emslie, M.P.6    Trivedi, M.H.7
  • 21
    • 84922105083 scopus 로고    scopus 로고
    • Testing the predictive value of peripheral gene expression for nonremission following citalopram treatment for major depression
    • Guilloux, J.-P., Bassi, S., Ding, Y., Walsh, C., Turecki, G., Tseng, G., Cyranowski, J.M., Sibille, E., Testing the predictive value of peripheral gene expression for nonremission following citalopram treatment for major depression. Neuropsychopharmacology 40:3 (2015), 701–710, 10.1038/npp.2014.226.
    • (2015) Neuropsychopharmacology , vol.40 , Issue.3 , pp. 701-710
    • Guilloux, J.-P.1    Bassi, S.2    Ding, Y.3    Walsh, C.4    Turecki, G.5    Tseng, G.6    Cyranowski, J.M.7    Sibille, E.8
  • 22
    • 36849058782 scopus 로고    scopus 로고
    • The binomial distribution of meta-analysis was preferred to model within-study variability
    • Hamza, T.H., van Houwelingen, H.C., Stijnen, T., The binomial distribution of meta-analysis was preferred to model within-study variability. J. Clin. Epidemiol. 61:1 (2008), 41–51, 10.1016/j.jclinepi.2007.03.016.
    • (2008) J. Clin. Epidemiol. , vol.61 , Issue.1 , pp. 41-51
    • Hamza, T.H.1    van Houwelingen, H.C.2    Stijnen, T.3
  • 23
    • 84975687657 scopus 로고    scopus 로고
    • Computational psychiatry as a bridge from neuroscience to clinical applications
    • Huys, Q.J.M., Maia, T.V., Frank, M.J., Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 19:3 (2016), 404–413, 10.1038/nn.4238.
    • (2016) Nat. Neurosci. , vol.19 , Issue.3 , pp. 404-413
    • Huys, Q.J.M.1    Maia, T.V.2    Frank, M.J.3
  • 25
    • 84929493513 scopus 로고    scopus 로고
    • Medicine. brain disorders? precisely
    • Insel, T.R., Cuthbert, B.N., Medicine. brain disorders? precisely. Science 348:6234 (2015), 499–500, 10.1126/science.aab2358.
    • (2015) Science , vol.348 , Issue.6234 , pp. 499-500
    • Insel, T.R.1    Cuthbert, B.N.2
  • 26
    • 84879782531 scopus 로고    scopus 로고
    • Predictive socioeconomic and clinical profiles of antidepressant response and remission
    • Jain, F.A., Hunter, A.M., Brooks3rd, J.O., Leuchter, A.F., Predictive socioeconomic and clinical profiles of antidepressant response and remission. Depress. Anxiety 30:7 (2013), 624–630, 10.1002/da.22045.
    • (2013) Depress. Anxiety , vol.30 , Issue.7 , pp. 624-630
    • Jain, F.A.1    Hunter, A.M.2    Brooks, J.O.3    Leuchter, A.F.4
  • 29
    • 0036304285 scopus 로고    scopus 로고
    • Toward a comprehensive developmental model for major depression in women
    • Kendler, K.S., Gardner, C.O., Prescott, C.A., Toward a comprehensive developmental model for major depression in women. Am. J. Psychiatry 159:7 (2002), 1133–1145, 10.1176/appi.ajp.159.7.1133.
    • (2002) Am. J. Psychiatry , vol.159 , Issue.7 , pp. 1133-1145
    • Kendler, K.S.1    Gardner, C.O.2    Prescott, C.A.3
  • 31
    • 84883052925 scopus 로고    scopus 로고
    • A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder
    • Khodayari-Rostamabad, A., Reilly, J.P., Hasey, G.M., de Bruin, H., Maccrimmon, D.J., A machine learning approach using EEG data to predict response to SSRI treatment for major depressive disorder. Clin. Neurophysiol. 124:10 (2013), 1975–1985, 10.1016/j.clinph.2013.04.010.
    • (2013) Clin. Neurophysiol. , vol.124 , Issue.10 , pp. 1975-1985
    • Khodayari-Rostamabad, A.1    Reilly, J.P.2    Hasey, G.M.3    de Bruin, H.4    Maccrimmon, D.J.5
  • 32
    • 84055183323 scopus 로고    scopus 로고
    • Using pre-treatment electroencephalography data to predict response to transcranial magnetic stimulation therapy for major depression
    • Khodayari-Rostamabad, A., Reilly, J.P., Hasey, G.M., deBruin, H., MacCrimmon, D., Using pre-treatment electroencephalography data to predict response to transcranial magnetic stimulation therapy for major depression. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011 (2011), 6418–6421, 10.1109/IEMBS.2011.6091584.
    • (2011) Conf. Proc. IEEE Eng. Med. Biol. Soc. , vol.2011 , pp. 6418-6421
    • Khodayari-Rostamabad, A.1    Reilly, J.P.2    Hasey, G.M.3    deBruin, H.4    MacCrimmon, D.5
  • 34
    • 84927726000 scopus 로고    scopus 로고
    • Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder
    • Korgaonkar, M.S., Rekshan, W., Gordon, E., Rush, A.J., Williams, L.M., Blasey, C., Grieve, S.M., Magnetic resonance imaging measures of brain structure to predict antidepressant treatment outcome in major depressive disorder. EBioMedicine 2:1 (2015), 37–45, 10.1016/j.ebiom.2014.12.002.
    • (2015) EBioMedicine , vol.2 , Issue.1 , pp. 37-45
    • Korgaonkar, M.S.1    Rekshan, W.2    Gordon, E.3    Rush, A.J.4    Williams, L.M.5    Blasey, C.6    Grieve, S.M.7
  • 35
    • 84864004297 scopus 로고    scopus 로고
    • Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans
    • Liu, F., Guo, W., Yu, D., Gao, Q., Gao, K., Xue, Z., Du, H., Zhang, J., Tan, C., Liu, Z., Zhao, J., Chen, H., Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS ONE, 7(7), 2012, e40968, 10.1371/journal.pone.0040968.
    • (2012) PLoS ONE , vol.7 , Issue.7 , pp. e40968
    • Liu, F.1    Guo, W.2    Yu, D.3    Gao, Q.4    Gao, K.5    Xue, Z.6    Du, H.7    Zhang, J.8    Tan, C.9    Liu, Z.10    Zhao, J.11    Chen, H.12
  • 37
    • 53549088324 scopus 로고    scopus 로고
    • Neuroanatomy of verbal working memory as a diagnostic biomarker for depression
    • Marquand, A.F., Mourão-Miranda, J., Brammer, M.J., Cleare, A.J., Fu, C.H.Y., Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. Neuroreport 19:15 (2008), 1507–1511, 10.1097/WNR.0b013e328310425e.
    • (2008) Neuroreport , vol.19 , Issue.15 , pp. 1507-1511
    • Marquand, A.F.1    Mourão-Miranda, J.2    Brammer, M.J.3    Cleare, A.J.4    Fu, C.H.Y.5
  • 38
    • 84870941857 scopus 로고    scopus 로고
    • Toward a systems biology of mood disorder
    • McIntosh, A.M., Toward a systems biology of mood disorder. Biol. Psychiatry 73:2 (2013), 107–108, 10.1016/j.biopsych.2012.10.009.
    • (2013) Biol. Psychiatry , vol.73 , Issue.2 , pp. 107-108
    • McIntosh, A.M.1
  • 39
    • 85012939635 scopus 로고    scopus 로고
    • Efficacy of vortioxetine on cognitive functioning in working patients with major depressive disorder
    • McIntyre, R.S., Florea, I., Tonnoir, B., Loft, H., Lam, R.W., Christensen, M.C., Efficacy of vortioxetine on cognitive functioning in working patients with major depressive disorder. J. Clin. Psychiatry 78:1 (2017), 115–121, 10.4088/JCP.16m10744.
    • (2017) J. Clin. Psychiatry , vol.78 , Issue.1 , pp. 115-121
    • McIntyre, R.S.1    Florea, I.2    Tonnoir, B.3    Loft, H.4    Lam, R.W.5    Christensen, M.C.6
  • 40
    • 84952716085 scopus 로고    scopus 로고
    • Cognition in major depressive disorder: a ’systemically important functional index’ (SIFI)
    • McIntyre, R.S., Lee, Y., Cognition in major depressive disorder: a ’systemically important functional index’ (SIFI). Curr. Opin. Psychiatry 29:1 (2016), 48–55, 10.1097/YCO.0000000000000221.
    • (2016) Curr. Opin. Psychiatry , vol.29 , Issue.1 , pp. 48-55
    • McIntyre, R.S.1    Lee, Y.2
  • 41
    • 84862025881 scopus 로고    scopus 로고
    • Clustering of depression and inflammation in adolescents previously exposed to childhood adversity
    • Miller, G.E., Cole, S.W., Clustering of depression and inflammation in adolescents previously exposed to childhood adversity. Biol. Psychiatry 72:1 (2012), 34–40, 10.1016/j.biopsych.2012.02.034.
    • (2012) Biol. Psychiatry , vol.72 , Issue.1 , pp. 34-40
    • Miller, G.E.1    Cole, S.W.2
  • 42
    • 84925548115 scopus 로고    scopus 로고
    • Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
    • Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., PRISMA Group, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J. Clin. Epidemiol. 62:10 (2009), 1006–1012, 10.1016/j.jclinepi.2009.06.005.
    • (2009) J. Clin. Epidemiol. , vol.62 , Issue.10 , pp. 1006-1012
    • Moher, D.1    Liberati, A.2    Tetzlaff, J.3    Altman, D.G.4    PRISMA Group5
  • 43
    • 37649013843 scopus 로고    scopus 로고
    • An extended random-effects approach to modeling repeated, overdispersed count data
    • Molenberghs, G., Verbeke, G., Demétrio, C.G.B., An extended random-effects approach to modeling repeated, overdispersed count data. Lifetime Data Anal. 13:4 (2007), 513–531, 10.1007/s10985-007-9064-y.
    • (2007) Lifetime Data Anal. , vol.13 , Issue.4 , pp. 513-531
    • Molenberghs, G.1    Verbeke, G.2    Demétrio, C.G.B.3
  • 44
    • 85011342704 scopus 로고    scopus 로고
    • A wavelet-based technique to predict treatment outcome for major depressive disorder
    • Mumtaz, W., Xia, L., Mohd Yasin, M.A., Azhar Ali, S.S., Malik, A.S., A wavelet-based technique to predict treatment outcome for major depressive disorder. PLoS ONE, 12(2), 2017, e0171409, 10.1371/journal.pone.0171409.
    • (2017) PLoS ONE , vol.12 , Issue.2 , pp. e0171409
    • Mumtaz, W.1    Xia, L.2    Mohd Yasin, M.A.3    Azhar Ali, S.S.4    Malik, A.S.5
  • 45
    • 84971529363 scopus 로고    scopus 로고
    • Metaprop: a stata command to perform meta-analysis of binomial data
    • Nyaga, V.N., Arbyn, M., Aerts, M., Metaprop: a stata command to perform meta-analysis of binomial data. Arch. Public Health, 72(1), 2014, 39, 10.1186/2049-3258-72-39.
    • (2014) Arch. Public Health , vol.72 , Issue.1 , pp. 39
    • Nyaga, V.N.1    Arbyn, M.2    Aerts, M.3
  • 46
    • 84857000430 scopus 로고    scopus 로고
    • Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
    • Orrù G., Pettersson-Yeo, W., Marquand, A.F., Sartori, G., Mechelli, A., Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 36:4 (2012), 1140–1152, 10.1016/j.neubiorev.2012.01.004.
    • (2012) Neurosci. Biobehav. Rev. , vol.36 , Issue.4 , pp. 1140-1152
    • Orrù, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3    Sartori, G.4    Mechelli, A.5
  • 47
    • 84941802558 scopus 로고    scopus 로고
    • Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction
    • Patel, M.J., Andreescu, C., Price, J.C., Edelman, K.L., Reynolds3rd, C.F., Aizenstein, H.J., Machine learning approaches for integrating clinical and imaging features in late-life depression classification and response prediction. Int. J. Geriatr. Psychiatry 30:10 (2015), 1056–1067, 10.1002/gps.4262.
    • (2015) Int. J. Geriatr. Psychiatry , vol.30 , Issue.10 , pp. 1056-1067
    • Patel, M.J.1    Andreescu, C.2    Price, J.C.3    Edelman, K.L.4    Reynolds, C.F.5    Aizenstein, H.J.6
  • 49
    • 85052242615 scopus 로고    scopus 로고
    • Tunability: Importance of hyperparameters of machine learning algorithms [Internet]. arXiv [stat.ML]. Available from
    • Probst, P., Bischl, B., Boulesteix, A.-L., 2018. Tunability: Importance of hyperparameters of machine learning algorithms [Internet]. arXiv [stat.ML]. Available from: http://arxiv.org/abs/1802.09596.
    • (2018)
    • Probst, P.1    Bischl, B.2    Boulesteix, A.-L.3
  • 50
    • 85052196429 scopus 로고    scopus 로고
    • R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.
    • R Core Team, 2017. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria.
    • (2017)
  • 51
    • 84871986003 scopus 로고    scopus 로고
    • A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers
    • Raison, C.L., Rutherford, R.E., Woolwine, B.J., Shuo, C., Schettler, P., Drake, D.F., Haroon, E., Miller, A.H., A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70:1 (2013), 31–41, 10.1001/2013.jamapsychiatry.4.
    • (2013) JAMA Psychiatry , vol.70 , Issue.1 , pp. 31-41
    • Raison, C.L.1    Rutherford, R.E.2    Woolwine, B.J.3    Shuo, C.4    Schettler, P.5    Drake, D.F.6    Haroon, E.7    Miller, A.H.8
  • 52
    • 85044962486 scopus 로고    scopus 로고
    • Suicide prediction with machine learning
    • Rakesh, G., Suicide prediction with machine learning. Am. J. Psychiatry Residents’ J. 12:1 (2017), 15–17, 10.1176/appi.ajp-rj.2017.120105.
    • (2017) Am. J. Psychiatry Residents’ J. , vol.12 , Issue.1 , pp. 15-17
    • Rakesh, G.1
  • 56
    • 85051500395 scopus 로고    scopus 로고
    • An empirical study of hyperparameter importance across datasets
    • van Rijn, J.N., Hutter, F., An empirical study of hyperparameter importance across datasets. Proc. of AutoML, 2017, 97–104.
    • (2017) Proc. of AutoML , pp. 97-104
    • van Rijn, J.N.1    Hutter, F.2
  • 57
    • 85036524587 scopus 로고    scopus 로고
    • mixomics: An R package for ’omics feature selection and multiple data integration
    • Rohart, F., Gautier, B., Singh, A., Lê Cao, K.-A., mixomics: An R package for ’omics feature selection and multiple data integration. PLoS Comput. Biol., 13(11), 2017, e1005752, 10.1371/journal.pcbi.1005752.
    • (2017) PLoS Comput. Biol. , vol.13 , Issue.11 , pp. e1005752
    • Rohart, F.1    Gautier, B.2    Singh, A.3    Lê Cao, K.-A.4
  • 58
    • 85012041679 scopus 로고    scopus 로고
    • Does pharmacogenomic testing improve clinical outcomes for major depressive disorder? A systematic review of clinical trials and Cost-Effectiveness studies
    • Rosenblat, J.D., Lee, Y., McIntyre, R.S., Does pharmacogenomic testing improve clinical outcomes for major depressive disorder? A systematic review of clinical trials and Cost-Effectiveness studies. J. Clin. Psychiatry 78:6 (2017), 720–729, 10.4088/JCP.15r10583.
    • (2017) J. Clin. Psychiatry , vol.78 , Issue.6 , pp. 720-729
    • Rosenblat, J.D.1    Lee, Y.2    McIntyre, R.S.3
  • 59
    • 85024095269 scopus 로고    scopus 로고
    • Predicting early psychiatric readmission with natural language processing of narrative discharge summaries
    • Rumshisky, A., Ghassemi, M., Naumann, T., Szolovits, P., Castro, V.M., McCoy, T.H., Perlis, R.H., Predicting early psychiatric readmission with natural language processing of narrative discharge summaries. Transl. Psychiatry, 6(10), 2016, e921, 10.1038/tp.2015.182.
    • (2016) Transl. Psychiatry , vol.6 , Issue.10 , pp. e921
    • Rumshisky, A.1    Ghassemi, M.2    Naumann, T.3    Szolovits, P.4    Castro, V.M.5    McCoy, T.H.6    Perlis, R.H.7
  • 60
    • 65349169770 scopus 로고    scopus 로고
    • meta: an R package for meta-analysis
    • Schwarzer, G., meta: an R package for meta-analysis. R News 7:3 (2007), 40–45.
    • (2007) R News , vol.7 , Issue.3 , pp. 40-45
    • Schwarzer, G.1
  • 61
    • 26444561943 scopus 로고    scopus 로고
    • Neural network analysis in pharmacogenetics of mood disorders
    • Serretti, A., Smeraldi, E., Neural network analysis in pharmacogenetics of mood disorders. BMC Med. Genet., 5, 2004, 27, 10.1186/1471-2350-5-27.
    • (2004) BMC Med. Genet. , vol.5 , pp. 27
    • Serretti, A.1    Smeraldi, E.2
  • 62
    • 33846411843 scopus 로고    scopus 로고
    • A neural network model for combining clinical predictors of antidepressant response in mood disorders
    • Serretti, A., Zanardi, R., Mandelli, L., Smeraldi, E., Colombo, C., A neural network model for combining clinical predictors of antidepressant response in mood disorders. J. Affect. Disord. 98:3 (2007), 239–245, 10.1016/j.jad.2006.08.008.
    • (2007) J. Affect. Disord. , vol.98 , Issue.3 , pp. 239-245
    • Serretti, A.1    Zanardi, R.2    Mandelli, L.3    Smeraldi, E.4    Colombo, C.5
  • 64
    • 84923687255 scopus 로고    scopus 로고
    • Latent classes of nonresponders, rapid responders, and gradual responders in depressed outpatients receiving antidepressant medication and psychotherapy
    • Thibodeau, M.A., Quilty, L.C., De Fruyt, F., De Bolle, M., Rouillon, F., Bagby, R.M., Latent classes of nonresponders, rapid responders, and gradual responders in depressed outpatients receiving antidepressant medication and psychotherapy. Depress. Anxiety 32:3 (2015), 213–220, 10.1002/da.22293.
    • (2015) Depress. Anxiety , vol.32 , Issue.3 , pp. 213-220
    • Thibodeau, M.A.1    Quilty, L.C.2    De Fruyt, F.3    De Bolle, M.4    Rouillon, F.5    Bagby, R.M.6
  • 65
    • 23944472352 scopus 로고    scopus 로고
    • Symptom clusters as predictors of late response to antidepressant treatment
    • Trivedi, M.H., Morris, D.W., Grannemann, B.D., Mahadi, S., Symptom clusters as predictors of late response to antidepressant treatment. J. Clin. Psychiatry 66:8 (2005), 1064–1070.
    • (2005) J. Clin. Psychiatry , vol.66 , Issue.8 , pp. 1064-1070
    • Trivedi, M.H.1    Morris, D.W.2    Grannemann, B.D.3    Mahadi, S.4
  • 67
    • 30044433660 scopus 로고    scopus 로고
    • Evaluation of outcomes with citalopram for depression using measurement-based care in STAR* d: implications for clinical practice
    • Trivedi, M.H., Rush, A.J., Wisniewski, S.R., Evaluation of outcomes with citalopram for depression using measurement-based care in STAR* d: implications for clinical practice. Am. J. Psychiatry, 2006.
    • (2006) Am. J. Psychiatry
    • Trivedi, M.H.1    Rush, A.J.2    Wisniewski, S.R.3
  • 69
    • 77958110812 scopus 로고    scopus 로고
    • Conducting meta-analyses in R with the metafor package
    • Viechtbauer, W., Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36:3 (2010), 1–48.
    • (2010) J. Stat. Softw. , vol.36 , Issue.3 , pp. 1-48
    • Viechtbauer, W.1
  • 70
    • 84957381671 scopus 로고    scopus 로고
    • Estimating the true global burden of mental illness
    • Vigo, D., Thornicroft, G., Atun, R., Estimating the true global burden of mental illness. Lancet Psychiatry 3:2 (2016), 171–178, 10.1016/S2215-0366(15)00505-2.
    • (2016) Lancet Psychiatry , vol.3 , Issue.2 , pp. 171-178
    • Vigo, D.1    Thornicroft, G.2    Atun, R.3
  • 71
    • 84929129683 scopus 로고    scopus 로고
    • A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression
    • van Waarde, J.A., Scholte, H.S., van Oudheusden, L.J.B., Verwey, B., Denys, D., van Wingen, G.A., A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression. Mol. Psychiatry, 20, 2014, 609, 10.1038/mp.2014.78.
    • (2014) Mol. Psychiatry , vol.20 , pp. 609
    • van Waarde, J.A.1    Scholte, H.S.2    van Oudheusden, L.J.B.3    Verwey, B.4    Denys, D.5    van Wingen, G.A.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.